Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ với pt tổng quát: \(ax^2+bx+c=0\) có \(\Delta=b^2-4ac\)
Nếu như vậy thì: \(1.x^2+6x+m\) có \(\Delta=6^2-4m\)chứ?
Riêng mình thì bài này mình dùng delta phẩy cho lẹ:
Lời giải
Để pt \(x^2+6x+m=0\) có 2 nghiệm phân biệt thì:
\(\Delta'=\left(\frac{b}{2}\right)^2-ac=3^2-m>0\)
\(\Leftrightarrow m< 9\)
a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)
Vậy PT luôn có 2 nghiệm phân biệt.
b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi
\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)
a= 1; b'= -(m+1); c=2m
1. Δ'>0
Theo Hệ thức Viet ta có: S=...= 2(m+1) và P= 2m
2. Để PT có 2 nghiệm cùng dương
\(\left\{{}\begin{matrix}S=2\left(m+1\right)>0\Leftrightarrow m>-1\\P=2m>0\Leftrightarrow m>0\end{matrix}\right.\Rightarrow m>0\)
Vậy với m>0 thì PT có 2 nghiệm cùng dương
3. Từ Viets:
S= 2(m+1)= 2m+2
P= 2m
Suy ra: S-P=2m+2-2m=2
hay x1+x2-x1.x2-2=0
Phương trình x 2 + (2m – 1)x + m 2 – 2m + 2 = 0
(a = 1; b = 2m – 1; c = m 2 – 2m + 2)
Ta có ∆ = ( 2 m – 1 ) 2 – 4 . ( m 2 – 2 m + 2 ) = 4 m – 7
Gọi x 1 ; x 2 là hai nghiệm của phương trình, theo hệ thức Vi-ét ta có
Vì a = 1 ≠ 0 nên phương trình có hai nghiệm âm phân biệt ⇔ Δ > 0 P > 0 S > 0
⇔ 4 m − 7 > 0 1 − 2 m > 0 m 2 − 2 m + 2 > 0 ⇔ m > 7 4 m < 1 2 m − 1 2 + 1 > 0 ( l u o n d u n g ) ⇔ m > 7 4 m < 1 2 ( v o l y )
Vậy không có giá trị nào của m thỏa mãn đề bài
Đáp án: D