Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Với k =0 thì biểu thức bằng:
4x3-25=0 hay 4x3 = 25 nên x=\(\sqrt[3]{\frac{25}{4}}\)
b,Với k =(-3) thì biểu thức bằng:\(4x^3-25+9-12x=0\)
hay :\(4x^3-12x=16\)
\(4x\left(x^2-3\right)=16\)
\(x^2-3=\frac{4}{x}\) nên suy ra \(\left(x^2-3\right):\frac{4}{x}=1\)
hay \(x^3-3x=4\)
nên nếu với x là một số tự nhiên thì phương trình vô nghiệm
a) Thay k = 0 vào ta có pt: 9x2 - 25 = 0 nên x = 5/3 hoặc x = -5/3
b) Để pt nhận x = -1 làm nghiệm thì: 9 - 25 - k2 + 2k = 0 tương đương - k2 + 2k - 16 =0
Mặt khác - k2 + 2k - 16 = - ( k2 - 2k + 16) = -[(k - 1)2 + 15] < 0
Suy ra không có giá trị nào của k thỏa mãn yêu cầu bài toán
Tìm điều kiện của m để phương trình sau là phương trình bậc nhất một ẩn
\(\left(m^2-4\right)x+k+1=0\)
(m^2-4)x+k+1=0
*/ ký hiệu k hơi khó hiểu nếu là (y) hiểu là ẩn luôn là (k) lên suy ra k là tham số hay hay ẩn.
Giải theo k luôn:
*-Nếu coi k là ẩn thì : m=+-2
*-Nếu coi k là tham số thì: m khác +-2
4x2 - 25 + k2 + 4kx = 0
<=> ( 2x + k )2 - 25 = 0
a) Với k = 0 => ( 2x + 0 )2 - 25 = 0
4x2 - 25 = 0
( 2x - 5).(2x+5) = 0
=> \(\left[{}\begin{matrix}2x-5=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2,5\\x=-2,5\end{matrix}\right.\)
b) Với k = -3 => ( 2x-3)2 - 25 =0
( 2x-3-5 ). ( 2x-3+5) = 0
( 2x-8). (2x+2) =0
=> \(\left[{}\begin{matrix}2x-8=0\\2x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
c) Để pt nhận x= -2 làm nghiệm
=> 4. (-2)2 - 25 + k2 +4k . (-2) =0
4 . 4 - 25 + k2 - 8k = 0
k2 -8k - 9 = 0
( k -9 ). ( k + 1 ) =0
=> \(\left[{}\begin{matrix}k-9=0\\k+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}k=9\\k=-1\end{matrix}\right.\)
Vậy nếu k=9 hoặc k=-1 thì pt nhận x=-2 làm nghiệm
a, Thay k=0 vào phương trình, ta có:
\(4x^2-25=0\)
\(4x^2=25\Rightarrow x=\sqrt{\dfrac{25}{4}}=\dfrac{5}{2}.\)
Vậy nghiệm của PT là \(\dfrac{5}{2}\)khi k=0.
b, Thay k=-3 vào phương trình, ta có:
\(4x^2-25+9-12x=0\)
\(4x^2-12x=16\)
\(x^2-3x=4\)
\(x^2-3x-4=0\)
\(x^2-4x+\left(x-4\right)=0\)
\(\left(x-4\right)\left(x+1\right)=0\)
\(\Rightarrow x-4=0\) hoặc \(x+1=0\)
\(\Rightarrow x=4\) hoặc \(x=-1\)
Vậy phương trình có hai nghiệm là 4 và -1 khi k=-3.
c, Cho : \(16-25+k^2-8k=0\)
\(k^2-8k-9=0\)
\(k^2-9k+\left(k-9\right)=0\)
\(\left(k-9\right)\left(k+1\right)=0\)
\(\Rightarrow k-9=0\) hoặc \(k+1=0\)
\(\Rightarrow k=9\) hoặc \(k=-1\)
Vậy các giá trị của k là 9 và -1 để pt nhận x=-2 làm nghiệm.
Bài 1 :
a. Thay x = 3 vào phương trình đã cho, ta được:
12-2(1-3)2 = 4(3-m)-(3-3)(2.3+5)
12-8 = 12-4m
4m = 12-12+8
4m = 8
m = 2
Vậy với giá trị của m = 2 thì phương trình nhận x =3 là nghiệm
b.Thay x=1 vào phương trình đã cho, ta được :
(9.1+1)(1-2m) = (3.1+2)(3.1-5)
10(1-2m) = -10
10 -20m = -10
-20m = -10-10
-20m = -20
m = 1
Vậy với m = 1 thì phương trình nhận x = 1 là nghiệm
Bài 2 :
a.Thay k = 0 vào phương trình đã cho, ta được :
9x2 -25 -02-2.0.x =0
9x2 -25 =0
(3x-5)(3x+5) =0
(1) 3x-5 =0
3x =5
x = 5/3
(2) 3x +5 =0
3x = -5
x = -5/3
Vậy với k =0 thì x =5/3; x =-5/3 là nghiệm của phương trình
b. Thay x = -1 vào phương trình đã cho, ta được :
9.(-1)2-25-k2-2.k.(-1) =0
9-25-k2 +2k =0
-k2+2k =16
k(-k+2) =16
Vì thế, không có giá trị nào của k thỏa mãn làm cho pt nhận x = -1 là nghiệm
Vậy không có giá trị của k thỏa mãn để phương trình nhận x = -1 là nghiệm
\(a,4x^2-\left(2x-1\right)\left(1-4x\right)=1\)
\(\left(2x-1\right)\left(1-4x\right)=4x.4x-1\)
\(TH1:\orbr{\begin{cases}2x-1=4x.4x-1\\1-4x=4x.4x-1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-4x.4x=-1+1\\-4x-4x.4x=-1-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-16x=0\\-4x-16x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-14x=0\\-20x=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{10}\end{cases}}}\)
Vậy pt có nghiệm là (x;y) = (0;1/10)
tự thực hiện tiếp vs dấu - , kl TH1 thoi
a:Khi k=0 thì \(9x^2-25=0\)
=>x=5/3hoặc x=-5/3
b: Khi x=-1 thì pt sẽ là:
\(9-25-k^2+2k=0\)
\(\Leftrightarrow-k^2+2k-16=0\)
\(\Leftrightarrow k^2-2k+16=0\)
\(\Leftrightarrow\left(k-1\right)^2+15=0\)(vô lý)
\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
đặt \(\left(x^2+x\right)=t\) ta có
\(t^2+4t-12=0\)
\(\Leftrightarrow t^2+6t-2t-12=0\)
\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường
Khi k = - 3 ta có phương trình: 4 x 2 – 25 + - 3 2 + 4(-3)x = 0
⇔ 4 x 2 – 25 + 9 – 12x = 0
⇔ 4 x 2 – 12x – 16 = 0
⇔ x 2 – 3x – 4 = 0
⇔ x 2 – 4x + x – 4 = 0
⇔ x(x – 4) + (x – 4) = 0
⇔ (x + 1)(x – 4) = 0
⇔ x + 1 = 0 hoặc x – 4 = 0
x + 1 = 0 ⇔ x = -1
x – 4 = 0 ⇔ x = 4
Vậy phương trình có nghiệm x = -1 hoặc x = 4.