Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ pt (P) : y = ax^2 - bx + c chứ ?
a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)
(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1)
(P) đi qua điểm C(-1;1) <=> \(a+b+c=1\)(2)
Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)
Vậy pt Parabol có dạng \(x^2-x-1=y\)
Bài 1b
(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)
(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)
Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)
tương tự nhé
vì có ít time nên mk hướng dẩn thôi nha .
câu 1: vì parabol có đỉnh là \(I\left(-1;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\) (1)
và nó cắt trục tung tại điểm có tung độ là \(1\) \(\Rightarrow c=1\) (2)
từ (1) và (2) ta có hệ : \(\Rightarrow a;b;c\)
câu 2 : vì parabol có đỉnh là \(I\left(-1;-4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\16a-4b+c=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2a\\c=-4-8a\end{matrix}\right.\)
thế vào \(M\) đưa về dạng bình phương 1 số là ô kê .
câu 3 : tương tự câu 2 thôi nha
từ dữ liệu đề bài \(\Rightarrow\left\{{}\begin{matrix}4a-2b+c=0\\a+b+a=0\end{matrix}\right.\) \(\Rightarrow\) ........................
Hàm số đi qua \(A\left(8;0\right)\) nên: \(a.8^2+8b+c=0\)\(\Leftrightarrow64a+8b+c=0\).
Hàm số có đỉnh là: \(I\left(6;-12\right)\) nên: \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=6\\6^2.a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}12a+b=0\\36a+6b+c=-12\end{matrix}\right.\).
Vậy ta có hệ: \(\left\{{}\begin{matrix}64a+8b+c=0\\-b=12a\\36a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-36\\c=96\end{matrix}\right.\).
Vậy : \(y=-3x^2-36x+96\).
a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.
Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2
Giải hệ phương trình: ta được a = 2, b = 1.
Parabol có phương trình là: y = 2x2 + x + 2.
b) Giải hệ phương trình:
Parabol: y = x2 - x + 2.
c) Giải hệ phương trình:
Parabol: y = x2 - 4x + 2.
d) Ta có:
Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.
\(a\ne0\)
\(\left\{{}\begin{matrix}-\frac{b}{2a}=\frac{1}{3}\\\frac{4ac-b^2}{4a}=-\frac{4}{3}\\a-b+c=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=-\frac{2}{3}a\\4ac-b^2=-\frac{16}{3}a\\a-b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\\c=-1\end{matrix}\right.\)
Vì (P) có trục đối xứng x = 1 => \(-\dfrac{b}{2a}=1\left(1\right)\)
Vì (P) đi qua A(2; 3) => với x = 2 thì y = 3 => 4a + 2b + c = 3 (2)
Vì (P0 cắt trục tung tại điểm có tung độ bằng 3 => Với x = 0 thì y = 3 => c = 3 (3)
Từ (1), (2), (3) ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\4a+2b+c=3\\c=3\end{matrix}\right.\) => ...
=> xem lại đề @@
Vậy (P) cần tìm là y= x2-2x+3.
Chọn D.