Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Tam giác DAO cân tại O (vì OA = OD) => Góc ADO = Góc DAO
Ta lại có: Góc HBD = Góc ADO (cùng phụ Góc HDB) => Góc HBD = Góc DAO
Tam giác DBA vuông tại D => Góc DAB + Góc DBA = 90độ
Mà Góc DBA + Góc DBI = 90độ
=> Góc DAB = Góc DBI hay Góc DAO = Góc DBI
Từ 2 chứng minh trên ta được: Góc HBD = Góc DBI
=> BD (hay BK) là đường phân giác Góc HBI
Áp dụng tính chất đường phân giác vào tam giác BHI ta được:
KH / BH = KI / BI hay KH.BI = KI.BH (đpcm)
b: ΔOBC cân tại O có OE là đường cao
nên OE là phân giác của góc COB
Xét ΔBOE và ΔCOE có
OB=OC
góc BOE=góc COE
OE chung
=>ΔBOE=ΔCOE
=>góc OCE=góc OBE=90 độ
=>EC là tiếp tuyến của (O)
c: OB=OC
EB=EC
=>OE là trung trực của BC
=>sđ cung DB=sđ cung DC
=>góc BAD=góc CAD
=>AD là phân giác của góc BAC
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>ΔACD vuông tại C
mà CM là đường trung tuyến
nên CM=AD/2=AM=DM
Xét ΔMAO và ΔMCO có
MA=MC
MO chung
AO=CO
DO đó: ΔMAO=ΔMCO
Suy ra: \(\widehat{MAO}=\widehat{MCO}=90^0\)
hay MC là tiếp tuyến của (O)
b: Ta có: MC=MA
nên M nằm trên đường trung trực của AC(1)
Ta có: OC=OA
nên O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OM là đường trung trực của AC
hay OM vuông góc với AC tại trung điểm của AC
a.Xét 2 tam giác vuông ABO và ACO có
BO=CO (đều là BK đường tròn)
AB=AC (Độ dài hai tiếp tuyến của một đường tròn cùng xuất phát từ một điểm bên ngoài đường tròn thì bằng nhau)
góc ABO=góc ACO=90 độ
Suy ra tam giác ABO=tam giác ACo (c.g.c) suy ra góc BAO=góc CAO
Tam giác ABC cân tại A nên AO vừa là phân giác của góc BAC vừa là đường cao của tam giác ABC hạ từ A xuống BC vậy AO vuông góc với BC
c,Ta có góc BCO=góc CAO (cùng phụ với góc AOC)
góc CAO=góc BAO
suy ra góc BCO=góc BAO (1)
Xét tam giác vuông BCH có góc CBH+góc BCO=90 độ (2)
Ta có góc ABC+góc BAO=90 độ (3)
Từ (1) (2) (3) suy ra góc CBH=góc ABC nên BC là phân giác của góc ABH
mình chỉ biết làm câu a và c thôi mong bạn thông cảm