K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

Đáp án C

Phương pháp:

- Tính thể tích khối nón có được khi quay tam giác ACH quanh AB (hay AH) bằng công thức V = 1 3 S d . h  với đáy là hình tròn tâm H bán kính CH và chiều cao là AH.

- Tìm GTLN của thể tích dựa vào phương pháp xét hàm, từ đó tìm được AH.

Cách giải: Thể tích khối nón khi quay Δ A C H quay quanh AB:

V = 1 3 A H . π . C H 2 = 1 3 A H . π . A H . A B − A H 2 = 2 R π 3 . A H 2 − π 3 A H 3

Chú ý khi giải:

Ở bước kết luận nhiều HS sẽ kết luận sai góc α là góc 45 ° dẫn đến chọn sai đáp án. 

30 tháng 3 2017

1 tháng 1 2018

Đáp án B

24 tháng 4 2019

Đáp án B.

Quay tam giác AHC quanh trục AB thu được hình nón có h = AH; r = CH.

29 tháng 4 2019

Đây mà là Tiếng Việt lớp 1 ah?

29 tháng 4 2019

Ơ ?? thế cuối cùng m lớp mấy thế ?

10 tháng 12 2018

2 tháng 4 2017

Lấy điểm A ' ∈ O ' ; B ' ∈ O  sao cho A A ' ; B B '  song song với trục O O ' .

Khi đó ta có lăng trụ đứng O A B ' . O ' A ' B .

Ta có:

Chọn A.

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m