K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín.

Theo định luật bảo toàn động lượng:  p → = p → 1 + p → 2

+ Với  p = m v = 2.250 = 500 k g . m / s p 1 = m 1 v 1 = 1.500 = 500 k g . m / s p 2 = m 2 v 2 = v 2 k g . m / s

+ Vì v → 1 ⊥ v → 2 ⇒ p → 1 ⊥ p →  theo pitago

⇒ p 2 2 = p 1 2 + p 2 ⇒ p 2 = p 1 2 + p 2 = 500 2 + 500 2 = 500 2   k g m / s

+ Mà  sin α = p 1 p 2 = 500 500 2 = 2 2 ⇒ α = 45 0

Vậy mảnh hai chuyển động theo phương hợp với phương thẳng đứng một góc  45 ° với vận tốc 500 2 m / s (m/s)

Chọn đáp án A

4 tháng 10 2019

Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín.

Theo định luật bảo toàn động lượng  p → = p → 1 + p → 2

Với  p = m v = 2.250 = 500 ( k g m / s ) p 1 = m 1 v 1 = 1.500 = 500 ( k g m / s ) p 2 = m 2 v 2 = v 2 ( k g m / s )

  v → 1 ⊥ v → ⇒ p → 1 ⊥ p →   t h e o   p i t a g o   ⇒ p 2 2 = p 1 2 + P 2 ⇒ p 2 = p 1 2 + p 2 = 500 2 + 500 2 = 500 2 ( k g m / s )

⇒ v 2 = p 2 = 500 2 ( m / s ) M à   sin α = p 1 p 2 = 500 500 2 = 2 2 ⇒ α = 45 0

Vậy mảnh hai chuyển động theo phương hợp với phương thẳng đứng một góc  45 0  với vận tốc  500 2 ( m / s )

 

9 tháng 3 2020

bạn tham thảo nhé https://hoidap247.com/cau-hoi/307328

25 tháng 2 2021

đã gõ xong bài toán nhưng hoc24.vn lại không vào được? :D 

Bảo toàn động lượng Từ đề bài ta có:

 \(p_2=\sqrt{p^2+p_1^2}=\sqrt{\left(mv\right)^2+\left(m_1v_1\right)^2}=612\left(kg.m/s\right)\)

\(\Rightarrow v_2=\dfrac{p_2}{m_2}=1224\left(m/s\right)\)

\(\cos\left(p_2;p\right)=\dfrac{p}{p_2}\) thay số tính nốt :D 

3) Bảo toàn động lượng chiều (+) là chiều cđ của đạn:

\(0=m_sv_s+m_đv_đ\Rightarrow v_s=\dfrac{-m_đv_đ}{m_s}=-1,5\left(m/s\right)\)

vậy súng giật lùi về phía sau với độ lớn vận tốc 1,5 m/s

ミ★ღ๖ۣۜPhoenixღ ★彡 Truy Kính Thằng Này Tặng 500 Coin
9 tháng 2 2020

Bài 1 :

P1 =m1g => m1 = 1(kg)

P2 = m2g => m2 =1,5(kg)

Trước khi nổ, hai mảnh của quả lựu đạn đều chuyển động với vận tốc v0, nên hệ vật có tổng động lượng : \(p_0=\left(m_1+m_2\right)v_0\)

Theo đl bảo toàn động lượng : \(p=p_0\Leftrightarrow m_1v_1+m_2v_2=\left(m_1+m_2\right)v_0\)

=> \(v_1=\frac{\left(m_1+m_2\right)v_0-m_2v_2}{m_1}=\frac{\left(1+1,5\right).10-1,5.25}{1}=-12,5\left(m/s\right)\)

=> vận tốc v1 của mảnh nhỏ ngược hướng với vận tốc ban đầu v0 của quả lựu đạn.

9 tháng 2 2020

Bài2;

Vận tốc mảnh nhỏ trước khi nổ là :

v02=\(v_1^2=2gh\)

=> v1 = \(\sqrt{v_0^2-2gh}=\sqrt{100^2-2.10.125}=50\sqrt{3}\left(m/s\right)\)

Theo định luật bảo toàn động lượng :

\(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)

p = mv = 5.50 =250(kg.m/s)

\(\left\{{}\begin{matrix}p_1=m_1v_1=2.50\sqrt{3}=100\sqrt{3}\left(kg.m/s\right)\\p_2=m_2v_2=3.v_2\left(kg.m/s\right)\end{matrix}\right.\)

+ Vì \(\overrightarrow{v_1}\perp\overrightarrow{v_2}\rightarrow\overrightarrow{p_1}\perp\overrightarrow{p_2}\)

=> p2 = \(\sqrt{p_1^2+p^2}=\sqrt{\left(100\sqrt{3}\right)^2+250^2}=50\sqrt{37}\left(kg.m/s\right)\)

=> v2= \(\frac{p_2}{m_2}=\frac{50\sqrt{37}}{3}\approx101,4m/s+sin\alpha=\frac{p_1}{p_2}=\frac{100\sqrt{3}}{50\sqrt{3}}\)

=> \(\alpha=34,72^o\)

4 tháng 10 2018

1 tháng 1 2019

p p p 1 2

( trên hình mấy cái p, p1, p2 có dấu vectơ hết nhá)
\(m=m_1+m_2\)=20kg

\(\Rightarrow m_2=m-m_1=\)15kg

theo định luật bảo toàn động lượng thì

\(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)

theo hình

\(\Rightarrow\)\(p_2=\sqrt{p^2+p_1^2}\)

\(\Leftrightarrow\left(m_2.v_2\right)=\sqrt{\left(m.v\right)^2+\left(m_1.v_1\right)^2}\)

\(\Rightarrow v_2\approx461,8\)m/s

theo hình ta có

\(tan\alpha=\dfrac{p_1}{p}\Rightarrow\alpha=30^0\)

vậy viên đạn thứ hai bay hợp với phương thẳng đứng một gốc 300

3 tháng 1 2019

thanks bạn ạ

28 tháng 2 2022

Tham khảo:

Giải thích các bước giải:

 m=2kg;v=250m/s;v1=500m/s;α1=600

Bảo toàn động lượng của viên đạn trước và sau khi nổ:

P→=P1→+P2→

ta thấy:

P=m.v=2.250=500kg.m/s

P1=m1.v1=22.500=500kg.m/s

Theo quy tắc hình bình hành ta có:

(P1→;P2→)=600^;P1=P⇒P1=P2=P

Vận tốc mảnh thứ 2:

{P1=P2m1=m2

{P1=P2m1=m2

⇒v1=v2=500m/s

28 tháng 2 2022

undefined

Bảo toàn động lượng: \(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)

Quy tắc hình bình hành:

\(p_2^2=p_1^2+p^2-2p_1\cdot p\cdot cos\left(\overrightarrow{p_1};\overrightarrow{p}\right)\)

    \(=\left(1\cdot500\right)^2+\left(2\cdot250\right)^2-2\cdot\left(1\cdot500\right)\cdot\left(2\cdot250\right)\cdot cos60^o\)

    \(=250000\) \(\Rightarrow p_2=500kg.m\)/s

Mảnh thứ hai bay theo góc:

\(sin\alpha=\dfrac{p_1\cdot cos\left(90-30\right)}{p_2}=\dfrac{1\cdot250\cdot cos60}{500}=0,25\)

\(\Rightarrow\alpha\approx14,5^o\)

30 tháng 3 2023

phương thẳng đứng vận tốc là 2.250-250.cos(60)=375