K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

Độ biến dạng tại vị trí cân bằng của dây  là

 

Chia dao động của vật làm 3 giai đoạn được biểu diễn như hình vẽ

Đáp án B

31 tháng 5 2016

Vận tốc của hai vật sau va chạm:  (M + m)V = mv   

=> V = 0,02\(\sqrt{2}\) (m/s)

Tọa độ ban đầu của hệ hai vật  x0 = \(\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}\) = 0,04m = 4cm

\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2+\left(M+m\right)}{k}=0,0016\Rightarrow A=0,04m=4cm\)

→ B

31 tháng 5 2016

Vận tốc của hai vật sau va chạm:   \(\left(M+m\right)V=mv\)

\(\rightarrow V=0,02\sqrt{2}\left(m\text{ /}s\right)\)

Tọa độ ban đầu của hệ hai vật: \(x_0=\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}=0,04m=4cm\)

\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2\left(M+m\right)}{k}=0,0016\) \(\rightarrow A=0,04m=4cm\)

Đáp án B

13 tháng 4 2017

Có A = 9cm, a(max) = -w2A => w = Pi;

=> s = 18cm, t = 1s => Tốc độ trung bình là 18cm/s

27 tháng 7 2016

Ta có :

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

11 tháng 1 2022

Gợi ý đi anh 

11 tháng 1 2022

nói lại em kém anh 7 năm nhé. Nên bọn em cần gợi ý mới làm được chứ. Với lại hình như anh học cái này thì phải bít chứ. Its ra cũng phải có gợi ý...!

Một lò xo và một sợi dây đàn hồi nhẹ có cùng chiều dài tự nhiên được treo thẳng đứng vào cùng một điểm cố định, đầu còn lại của lò xo và sợi dây gắn vào vật nặng có khối lượng m =100g như hình vẽ. Lò xo có độ cứng k1 = 10 N/m, sợi dây khi bị kéo dãn xuất hiện lực đàn hồi có độ lớn tỷ lệ với độ giãn của sợi dây với hệ số đàn hồi k2 = 30 N/m ( sợi dây khi bị kéo...
Đọc tiếp

Một lò xo và một sợi dây đàn hồi nhẹ có cùng chiều dài tự nhiên được treo thẳng đứng vào cùng một điểm cố định, đầu còn lại của lò xo và sợi dây gắn vào vật nặng có khối lượng m =100g như hình vẽ. Lò xo có độ cứng k1 = 10 N/m, sợi dây khi bị kéo dãn xuất hiện lực đàn hồi có độ lớn tỷ lệ với độ giãn của sợi dây với hệ số đàn hồi k2 = 30 N/m ( sợi dây khi bị kéo dãn tương đương như một lò xo, khi dây bị cùng luwjcj đàn hồi triệt tiêu ) Ban đầu vật đang ở vị trí cân bằng, kéo vật thẳng đứng xuống dưới một đoạn a = 5 cm rồi thả nhẹ. Khoảng thời gian kể từ khi thả cho đến khi vật đạt độ cao cực đại lần thứ nhất xấp xỉ bằng

A. 0,157 s.

B. 0,751 s.

C. 0,175 s.

D. 0,457 s.

1
25 tháng 3 2019

Chọn gốc toạ độ tại VTCB; chiều dương hướng xuống dưới.

Độ giãn của hệ lò xo + dây đàn hồi khi vật ở VTCB: 

- Khoảng thời gian từ khi thả vật đến khi vật đạt độ cao cực đại lần thứ nhất được chia làm hai giai đoạn:

+ Giai đoạn 1 (sợi dây bị kéo giãn tương đương như một lò xo): Vật đi từ vị trí biên x = 5cm đến vị trí x = -∆l = -2,5cm

+ Giai đoạn 2 (khi dây bị trùng lực đàn hồi bị triệt tiêu): Vật đi từ vị trị x = -∆l = -2,5cm đến biên âm.

- Giai đoạn 1:

Hệ dao động gồm lò xo và sợi dây đàn hồi nhẹ có cùng chiều dài tự nhiên treo thẳng đứng vào cùng một điểm cố định đầu còn lại của lò xo và sợi dây gắn vào vật nặng được coi như hai lò xo mắc song song

=> Độ cứng của hệ: k = k1 + k2 = 10 + 30 = 40 N/m

Chu kì dao động của hệ:

Ban đầu vật ở VTCB, kéo vật thẳng đứng xuống dưới một đoạn a = 5cm rồi thả nhẹ =>  A = 5cm.

Thời gian vật đi từ x = 5cm đến x = -2,5cm được biểu diễn trên đường tròn lượng giác:

- Giai đoạn 2:

Độ giãn của lò xo ở VTCB: ∆ l '   =   m g k 1   =   10 c m  => tại vị trí lò xo không biến dạng x = -10cm

Vật dao động điều hoà với chu kì và biên độ:

 

Vật đi từ vị trí x = -∆l = -10cm đến biên âm x   =   - 5 7   c m  được biểu diễn trên đường tròn lượng giác:

Từ đường tròn lượng giác ta tính được:

 

 => Khoảng thời gian kể từ khi thả vật đến khi vật đạt độ cao cực đại: t = t1 + t2 = 0,175s

Đáp án C

24 tháng 7 2016

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)