Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(X \rightarrow Y + \alpha\)
Định luật bảo toàn động năng \(\overrightarrow P_{X} =\overrightarrow P_{Y}+ \overrightarrow P_{\alpha} = \overrightarrow 0. \)
=> \( P_{Y}= P_{\alpha} => m_Y v_Y = m_{\alpha}v_{\alpha}\) hay \(\frac{m_Y}{m_{\alpha}}= \frac{v_{\alpha}}{v_Y}.(1)\)
Lại có \(P^2 = 2mK.\)
=> \(m_YK_Y=m_{\alpha}K_{\alpha}\)
=> \(\frac{m_Y}{m_{\alpha}}= \frac{K_{\alpha}}{K_Y}.(2)\)
Từ (1) và (2) => \(\frac{m_Y}{m_{\alpha}}= \frac{K_{\alpha}}{K_Y} =\frac{v_{\alpha}}{v_Y} .\)
Cứ mỗi hạt nhân Pôlôni bị phân rã tạo thành 1 hạt nhân chì trong mẫu.
Số hạt nhân Pôlôni bị phân rã là \(\Delta N = N_0 2^{-\frac{t}{T}}.\)
Số hạt nhân Pônôni còn lại là \( N = N_0 2^{-\frac{t}{T}}.\)
Tại thời điểm t1 : \(\frac{\Delta N}{N } = \frac{1-2^{-\frac{t_1}{T}}}{2^{-\frac{t_1}{T}}}= \frac{1}{3}\)
=> \(3(1-2^{-\frac{t_1}{T}})= 2^{-\frac{t_1}{T}}\)
=> \(2^{-\frac{t_1}{T}}= 2^{-2}\)
=> \(t_1 = 2T\)
=> \(t_2 = 2T+276 = 552 \) (ngày)
=> \(\frac{t_2}{T}= \frac{552}{138}= 4.\)
Tại thời điểm t2 : \(\frac{\Delta N_1}{N_1 } = \frac{1-2^{-\frac{t_2}{T}}}{2^{-\frac{t_2}{T}}}= \frac{1-2^{-4}}{2^{-4}}= 15.\)
=> \(\frac{N_1}{\Delta N_1} = \frac{1}{15}.\)
Năng lượng tỏa ra : \(W_{tỏa} = K_{sau}-K_{trước}= K_C + K_D - K_A = -0,81 MeV\)
\(K_{tỏa}<0\) nên phản ứng là thu năng lượng
=> Khối lượng của hệ hạt giảm : \(\Delta m = \frac{W_{tỏa}}{c^{2}}=1,44.10^{-30}kg=1,44.10^{-27}g\)
Chọn C.
Số hạt nhân chưa phóng xạ chính là số hạt nhân còn lại
\(N= N_0 2^{-\frac{t}{T}}= N_0 .2^{-4}= \frac{1}{16}N_0.\)
Chọn C