Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy một đỉnh B tùy ý của hình đa diện (H). Gọi M 1 là một mặt của hình đa diện (H) chứa B. Gọi A, B, C là ba đỉnh liên tiếp của M 1 . Khi đó AB, BC là hai cạnh của (H). Gọi M 2 là mặt khác với M 1 và có chung cạnh AB với M 1 . Khi đó M 2 còn có ít nhất một đỉnh D sao cho A, B, D là ba đỉnh khác nhau liên tiếp của M 2 . Nếu D ≡ C thì M 1 và M 2 có hai cạnh chung AB và BC, điều này vô lí. Vậy D phải khác C. Do đó qua đỉnh B có ít nhất ba cạnh BA, BC và BD.
Chọn A
Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất của ba mặt. Ví dụ đỉnh của tứ diện.
Chọn B
Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất ba mặt nên Chọn B.
Đáp án B
Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất 3 mặt.
Đáp án A
Theo định nghĩa của đa diện, mỗi đỉnh của đa diện là đỉnh chung của ít nhất 3 mặt.
TL :
Gọi số cạnh của khối đa diện là \(C\), số đỉnh là \(Đ\). Vì mỗi đỉnh là đỉnh chung của ba cạnh và mỗi cạnh có \(2\)đỉnh nên \(3Đ=2C\)do đó \(Đ\) là sỗ chẵn.
HT
Chọn C.
Dựa vào định nghĩa khối đa diện. Mỗi cạnh là cạnh chung của đúng hai mặt.