Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Theo công thức liên hệ giữa cường độ điện trường và hiệu điện thế :
\(E=\frac{U}{d}\) ta có d = CƯỜNG ĐỘ
Suy ra \(E=\frac{U_{CD}}{CD}=\frac{100}{0,02}=\frac{5000V}{m}\)
Để tìm \(U_{AB}\), ta giả sử có một điện tích q dịch chuyển từ A đến B. Theo định nghĩa của hiệu điện thế ta có: \(U_{AB}=\frac{A_{AB}}{q}\)
Trên đoạn đường AB, lực điện trường F = qE luôn luôn vuông góc với AB nên công của lực điện trường
\(A_{AB}=0\). Ta suy ra \(U_{AB}=0\) (mặt phẳng vuông góc với đường sức điện trường là mặt đẳng thế).
Ta có: \(U_{BC}=V_B-V_C=V_B-V_A+V_A-V_C=-U_{AB}+U_{AC}=U_{AC}\)
Mặt khác: \(U_{AC}=U_{CA}=-E.CA=-5000.0,04=-200V\)
b/ Công của lực điện trường khi một êlectron di chuyển từ A đến D:
\(A=-e.U_{AD}\)
với \(U_{AD}=-U_{DA}=-E.DA=-5000.0,02=-100V\)
Vậy \(A=1,6.10^{-19}.\left(-100\right)=1,6.10^{-17}J\)
a.Vì q1 > 0 mà chúng đẩy nhau nên q2 > 0
F= \(\frac{k.\left|q_1q_2\right|}{r^2}\)
\(\Rightarrow\left|q_2\right|=\frac{F.r^2}{\left|q_1\right|}=\frac{6,75.10^{-5}.0,02^2}{\left|4.10^{-8}\right|}=0,675\left(C\right)\)
=>q2 =0,675 C
b)
b) \(E_{q_1}=\frac{k.\left|q_1\right|}{BH^2}=\frac{9.10^9.\left|4.10^{-8}\right|}{0,01^2}=3,6.10^6\frac{V}{m}\)
\(E_{q_2}=\frac{k.\left|q_2\right|}{AH^2}=\frac{9.10^9.\left|0,675\right|}{0,01^2}=6,075.10^{13}\frac{V}{m}\)
Vì vecto E1 ↑↑ vecto E2=>E=|E1-E2|=6,075.1013 V/m
\(E_{q_3}=\frac{k.\left|q_3\right|}{AH^2}=\frac{9.10^9.\left|-2.10^{-8}\right|}{\left(0,02.\sin45^o\right)^2}=621,5.10^3\frac{V}{m}\)
Vì vecto E vuông góc với Eq3 nên:
EH =\(\sqrt{E_{q_3}^2+E^2}=6,075.10^{13}\left(\frac{V}{m}\right)\)
Đáp án B