Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Vì \((a-b)^2, (b-c)^2, (c-a)^2\geq 0, \forall a,b,c\in\mathbb{R}\). Do đó để tổng của chúng bằng $0$ thì \((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\).
Kết hợp với $a+b+c=3$ suy ra $a=b=c=1$
Do đó:
\(M=a^{2016}+2015b^{2015}+2020c=1+2015+2020=4036\)
Bài 2:
Xét hiệu:
\(\frac{x-y}{x+y}-\frac{x^2-y^2}{x^2+y^2}=(x-y)\left(\frac{1}{x+y}-\frac{x+y}{x^2+y^2}\right)\)
\(=(x-y).\frac{x^2+y^2-(x+y)^2}{(x+y)(x^2+y^2)}=\frac{(x-y)(x^2+y^2-x^2-2xy-y^2)}{(x^2+y^2)(x+y)}\)
\(=\frac{-2xy(x-y)}{(x^2+y^2)(x+y)}\)
Vì \(x>y>0\Rightarrow -2xy(x-y)< 0; (x^2+y^2)(x+y)>0\)
\(\Rightarrow \frac{x-y}{x+y}-\frac{x^2-y^2}{x^2+y^2}=\frac{-2xy(x-y)}{(x^2+y^2)(x+y)}< 0\)
\(\Rightarrow \frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Ta có đpcm.
b)Ta có: \(A=-x^2-2x-2\)
\(=-\left(x^2+2x+2\right)=-\left(x+1\right)^2-1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+1\right)^2-1\le-1\forall x\)
Vì -1 là số âm nên khi giá trị của biểu thức A được xác định thì biểu thức A luôn nhận giá trị âm
c)
Ta có: \(A=-x^2-2x-2\)
\(=-\left(x^2+2x+2\right)=-\left(x+1\right)^2-1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi
\(-\left(x+1\right)^2=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy: GTLN của đa thức \(A=-x^2-2x-2\) là -1 khi và chỉ khi x=-1
a, Áp dụng bđt Cauchy ta có
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
b, a(a+2)<(a+1)2
=>a2+2a<a2+2a+1(đúng)
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko
1/(1+a^2) +1/(1 +b^2) >= 2/(1+ ab)
<=>1/ (1+a^2) +1/(1 +b^2) - 2/(1+ ab) >=0
<=> [1/(1+a^2) - 1/(1+ ab)] + [1/(1 +b^2) - 1/(1+ ab) ] >= 0
<=> [ a(b-a)/(1+a^2)(1+ ab) ] + [ b(a-b)/(1 +b^2)(1+ ab)] >=0
<=> [ a(b-a)(1 +b^2) - b(b-a)(1+a^2) ]/[(1+a^2)(1 +b^2)(1+ ab)^2]>= 0
<=> [(b-a)(a + ab^2 - b + ba^2) ]/[(1+a^2)(1 +b^2)(1+ ab)^2]>= 0
<=> [(b-a)[(a- b)+ ab(b-a)] ]/[(1+a^2)(1 +b^2)(1+ ab)^2]>= 0
<=> [(b-a)^2(ab-1]/[(1+a^2)(1 +b^2)(1+ ab)^2]>= 0
Mẫu số luôn lớn hơn 1
[(b-a)^2 >= 0 với mọi a, b
Vì a, b >= 1 nên ( ab - 1 ) >= 0
=> đpcm.