K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

Giải bài 11 trang 27 sgk Hình học 12 | Để học tốt Toán 12

Gọi O là tâm hình hộp và tâm của hình bình hành BB’D’D. Khi đó O là trung điểm của EF.

Ta có: A’ ∈ CO (1)

CO ⊂ mp(CEF)(2)

Mặt khác A’E // CF, A’F // CE

Nên mp(CEF) cắt hình hộp theo thiết diện là hình bình hành A’ECF.

mp(CEF) chia hình hộp ABCD.A’B’C’D’ thành hai khối đa diện (Đ) và (Đ’).

Gọi (Đ) là khối đa diện có các đỉnh là A, B, C, D, A’, E, F và (Đ’) là khối đa diện còn lại.

Phép đối xứng qua tâm O biến các đỉnh A, B, C, D, A’, E, F của đa diện (Đ) lần lượt thành các đỉnh C’, D’, A’, B’, C, F, E của khối da diện (Đ’)

Suy ra phép đối xứng qua tâm O biến (Đ) thành (Đ’), nghĩa là hai hình đa diện (Đ) và (Đ’) bằng nhau.

Vậy tỉ số thể tích của (Đ) và (Đ’) bằng 1.

1 tháng 4 2017

Trước hết, ta xác định thiết diện của hình hộp ABCD.A’B’C’D’ khi cắt bởi mp (CEF). Mặt phẳng (CEF) chứa đường thẳng EF mà E là trung điểm của BB’, F là trung điểm của cơ nên EF chứa giao điểm O của các đường chéo hình hộp, do đó mặt phẳng (CEF) cùng chứa giao điểm O của các đường chéo và nó cũng chứa đường chéo A’C của hình hộp. Ta dễ dàng nhận xét rằng thiết diện chính là hình bình hành CEA’F. Qua EF ta dựng một mặt phẳng song song với đáy hình hộp, mặt phẳng này cắt AA’ ở p và cắt CC’ ở Q.

ta có thể tích của hình hộp ABCD.PEQF là: VABCD.PEQF =1/2 VABCD.A’B’C’D’ (1)

Ta cũng chứng minh được một cách dễ dàng: VCFQE = VA’FPE (2) (Hai hình chóp CFQE và A’FPE có chiều cao bằng nhau và diện tích đáy bằng nhau).

Xét khối đa diện ABCDE’F do mặt phẳng (CEF) chia ra trên hình hộp p ABCD.A’B’C’D ta có: VABCD.FA’EQ = VABCD.FPE +VA’FPE (3)

Từ (1), (2), (3) suy ra: VABCD.FA’EQ = 1/2 VABCD.A’B’C’D’ Vậy mặt phẳng (CEF) chia hình hộp thành hai khối đa diện có thể tích bằng nhau, tỉ số của chúng là 1. Chú ý: Có thể lí luận như sau: Giao điểm O của các đường chéo của hình hộp là tâm đối xứng của hình hộp, do đó mặt phẳng (CEF) chứa điểm o nên chia hình hộp thành hai hình đối xứng với nhau qua điểm o. Vậy hai hình này là hai hình bằng nhau và có thể tích bằng nhau.

10 tháng 1 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giả sử (AEF) cắt CC’ tại I. Khi đó ta có AE// FI, AF // EI nên tứ giác AEIF là hình bình hành. Trên cạnh CC’ lấy điểm J sao cho CJ = DF. Vì CJ song song và bằng DF nên JF song song và bằng CD. Do đó tứ giác CDFJ là hình chữ nhật. Từ đó suy ra FJ song song và bằng AB. Do đó AF song song và bằng BJ. Vì AF cũng song song và bằng EI nên BJ song song và bằng EI.

Từ đó suy ra IJ = EB = DF = JC = c/3

Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Nên V H = V A . BCIE + V A . DCIF

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì thể tích khối hộp chữ nhật ABCD.A’B’C’D’ bằng abc nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 5 2017

Khối đa diện

Khối đa diện

20 tháng 5 2017

Giả sử (P) cắt AA', BB'

Khối đa diện

15 tháng 2 2019

Phương pháp:

- Dựng thiết diện cắt bởi (AB 'M) với hình hộp.

- Sử dụng phương pháp cộng trừ thể tích khối đa diện suy ra các tỉ số thể tích.

Cách giải:

Dựng thiết diện cắt bởi (AB 'M) với hình hộp như hình vẽ.

Ta có: 

Đặt thể tích 

Mà 

Lại có 

Đáp án A

1 tháng 3 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giả sử đường thẳng EF cắt đường thẳng A’B’ tại I và cắt đường thẳng A’D’ tại J. AI cắt BB’ tại L, AJ cắt DD’ tại M. Gọi V0 là thể tích khối tứ diện AA’IJ. V là thể tích khối hộp ABCD.A’B’C’D’

Vì EB’ = EC’ và B’I // C’F

nên IB′ = FC′ = Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Để ý rằng BE’ // A’J , B’L // AA’

Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tương tự Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi AB = a, BC = b , đường cao hạ từ A xuống (A’B’C’D’) là h thì

V = V ABCD . A ' B ' C ' D '  = h a b . sin ∠ BAD

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

13 tháng 11 2018

Chọn D

+) Gọi  

Ta có M là trung điểm của AB

=> M là trung điểm EB'

=> N là trung điểm của ED' và AD

+) Ta có 

16 tháng 12 2017

 

Giải bài 2 trang 99 sgk Hình học 12 | Để học tốt Toán 12Giải bài 2 trang 99 sgk Hình học 12 | Để học tốt Toán 12

17 tháng 5 2019

Chọn B

IMfALuPsj9MW.png

Gọi K là trung điểm của AA' và V, VABC.KMNVA.KMN lần lượt là thể tích khối lăng trụ ABC. A'B'C' khối lăng trụ ABC. KMN và thể tích khối chóp A. MNK. Khi đó