Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Nhìn hình vẽ ta thấy V 1 = V S . M I A G .
Gọi V S . A B C D = V
⇒ V S . A B C = V S . A D C = V 2
Có V S . A G M V S . A B C = S G S B . S M S C = 2 3 . 1 2 = 1 3
⇒ V S . A G M = V 6
Có V S . A M I V S . A D C = S M S C . S I S D = 1 2 . 2 3 = 1 3
⇒ V S . A M I = V 6
⇒ V S . M I A G = V 3 ⇒ V 2 = V − V 3 = 2 3 V ⇒ V 2 V 1 = 2
Chọn D.
Phương pháp:
+) Sử dụng công thức tỉ lệ thể tích:
Cho khối chóp S.ABC, các điểm A 1 , B 1 , C 1 lần lượt thuộc SA, SB, SC
+) Chia khối chóp đã cho thành các khối chóp nhỏ, tính thể tích của từng khối chóp.
Cách giải:
I,J lần lượt là trung điểm của SM, SC (do K là trung điểm của SA)
Trong (SAB), gọi N là giao điểm của IK và AB
Trong (ABCD), kẻ đường thẳng qua N song song AC, cắt AD tại Q, CD tại P.
Khi đó, dễ dàng chứng minh P, Q lần lượt là trung điểm của CD, AD và
*) Gọi L là trung điểm của SD
Khi đó, khối đa diện SKJPQD được chia làm 2 khối: hình lăng trụ tam giác KJL.QPD và hình chóp tam giác S.KJL
Đáp án C
Qua G kẻ M N / / B C ( M ∈ S C , N ∈ S B )
V S . A M N V S . A B C = S A S A S M S B S N S C = 2 3 2 3 = 4 9 ⇒ V = 5 9 V S . A B C = 5 9 . 1 3 . S A . S A B C = 5 9 . 1 3 . a . 1 2 . a 2 = 5 a 3 54
Đáp án C
Ta có: 2 O D 2 = a 2 ⇒ O D = a 2
⇒ S O = O D tan 60 ∘ = a 2 . 3 = a 3 2
Gọi H là hình chiếu của N lên (ABCD) là trung điểm của OC.
Ta có: N H = S O 2 = a 6 4 ; S M B C = S A B C D = a 2
V N . B C M = 1 3 N H . S M B C = 1 3 . a 6 4 . a 2 = a 3 6 12
Ta có:
M D D C . C S C N . N P P M = 1 ⇔ 1.2. N P P M = 1 ⇔ N P P M = 1 2 ⇒ P M M N = 2 3
Ta có: V M . D P Q V M . B C N = P M M N . M D M C . M Q M B = 2 3 . 1 2 . 1 2 = 1 6
⇒ V N p Q D C A = 5 6 V N . B C M = 5 6 . a 3 6 12 = 5 a 3 6 72
Đáp án C