Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nối BM
Ta có AM= AB.cosMAB
=> || = ||.cos(, )
Ta có: . = ||.|| ( vì hai vectơ , cùng phương)
=> . = ||.||.cosAMB.
nhưng ||.||.cos(, ) = .
Vậy . = .
Với . = . lý luận tương tự.
b) . = .
. = .
=> . + . = ( + )
=> . + . = = 4R2
a) cos(; ) = = 0
=> (; ) = 900
b) cos(; ) = =
=> (; ) = 450
c) cos(; ) = =
=> (; ) = 1500
a) Ta có, theo quy tắc ba điểm của phép trừ:
= – (1)
Mặt khác, = (2)
Từ (1) và (2) suy ra:
= – .
b) Ta có : = – (1)
= (2)
Từ (1) và (2) cho ta:
= – .
c) Ta có :
– = (1)
– = (2)
= (3)
Từ (1), (2), (3) suy ra đpcm.
d) – + = ( – ) + = + = + ( vì = ) =
a) Gọi theo thứ tự ∆1, ∆2, ∆3 là giá của các vectơ , ,
cùng phương với => ∆1 //∆3 ( hoặc ∆1 = ∆3 ) (1)
cùng phương với => ∆2 // ∆3 ( hoặc ∆2 = ∆3 ) (2)
Từ (1), (2) suy ra ∆1 // ∆2 ( hoặc ∆1 = ∆2 ), theo định nghĩa hai vectơ , cùng phương.
Vậy
a) đúng.
b) Đúng.
Trước hết ta có
= 3 => = 3 ( +)
=> = 3 + 3
=> – = 3
=> =
mà = – nên = (– )
Theo quy tắc 3 điểm, ta có
= + => = + –
=> = – + hay = – +
Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.
Ta có = => =
= – = – = –
Theo quy tắc 3 điểm đối với tổng vec tơ:
= + => = – = (– ).
AK là trung tuyến thuộc cạnh BC nên
+ = 2 => – += 2
Từ đây ta có = + => = – – .
BM là trung tuyến thuộc đỉnh B nên
+ = 2 => – + = 2
=> = + .
⊥ => = 0
= –. = |-|. ||
Ta có: CB= a√2; = 450
Vậy = –. = -||: ||. cos450 = -a.a√2.
=> = -a2
a) Ta có = 2 = 2 + 0 suy ra = (2;0)
b) = (0; -3)
c) = (3; -4)
d) = (0,2; – √ 3)
Ta có cos(, ) = cos1350 =
sin(, ) = sin900 = 1
cos(, ) = cos00 = 1