K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCD có \(\widehat{A}+\widehat{C}=180^0\)

nên ABCD là tứ giác nội tiếp

hay A,B,C,D cùng thuộc 1 đường tròn

b: Tâm là trung điểm của AC

Bán kính là \(\dfrac{a\sqrt{2}}{2}\)

24 tháng 9 2021

a: Xét tứ giác ABCD có

ˆA+ˆC=1800A^+C^=1800

Do đó: ABCD là tứ giác nội tiếp

hay A,B,C,D cùng thuộc một đường tròn

b: Tâm là trung điểm của AC

R=AC2

24 tháng 9 2021

giúp mk với

a: Xét tứ giác ABCD có \(\widehat{A}+\widehat{C}=180^0\)

nên ABCD là tứ giác nội tiếp

hay A,B,C,D cùng nằm trên một đường tròn

b: Tâm là trung điểm của AC

a: Xét tứ giác ABCD có

\(\widehat{A}+\widehat{C}=180^0\)

Do đó: ABCD là tứ giác nội tiếp

hay A,B,C,D cùng thuộc một đường tròn

b: Tâm là trung điểm của AC

\(R=\dfrac{AC}{2}\)

23 tháng 6 2017

Sự xác định đường tròn. Tính chất đối xứng của đường tròn

11 tháng 12 2017

A B C D E K M I H F

a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\) 

Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.

Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.

b) Xét tam giác BEC và tam giác BHM có : 

\(\widehat{BEC}=\widehat{BHM}=90^o\)

Góc B chung

\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)

\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)

Ta có \(BK^2=BD^2=BH.BC=BE.EM\)   mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)

Vậy MK là tiếp tuyến của đường tròn tâm B.

c) 

Gọi F là giao điểm của CE với đường tròn tâm B.

Do \(BE\perp KF\)nên MB là trung trực của FK.

\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.

\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)

Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)

Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.

Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)

Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.

\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)

Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)

\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)

\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)

10 tháng 12 2017

giúp mình với!!!! ai đúng mình k cho

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng