Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Để F nguyên dương
=> 3x - 2 chia hết cho x + 3
3x + 9 - 11 chia hết cho x + 3
3(x + 3) - 11 chia hết cho x + 3
=> 11 chia hết cho x + 3
=> x + 3 thuộc Ư(11) = {1 ; -1; 11; -11}
Tự lập bảng xét 4 giá trị của ước , x lớn hơn 0 thì đáp ứng nhu cầu đề bài !
2. Cậu vẽ hình đi , tớ hình yếu lắm
Xét đề bài , ta thấy :
\(\widehat{xOy'}+\widehat{y'Ox'}=90^0\) \(\Rightarrow\widehat{x'Oy}=90^0-\widehat{y'Ox'}\)
\(\widehat{yOx'}+\widehat{x'Oy'}=90^0\) \(\Rightarrow\widehat{yOx'}=90^0-\widehat{x'Oy'}\)
=> \(\dfrac{\widehat{x'Oy}}{\widehat{y'Ox}}=\dfrac{1}{1}=1\)
3. Ta có :
|3 - 2014x| \(\ge0\)
=> 8 - |3 - 2014x| \(\le8\)
=> MaxA = 8
<=> |3 - 2014x| = 0
<=> x = \(\dfrac{3}{2014}\)
4. \(E=2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2}}}}=2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}=2+\dfrac{1}{2+\dfrac{1}{1+\dfrac{2}{3}}}\)
\(E=2+\dfrac{1}{2+\dfrac{1}{\dfrac{5}{3}}}=2+\dfrac{1}{2+\dfrac{3}{5}}=2+\dfrac{1}{\dfrac{13}{5}}=2+\dfrac{5}{13}=\dfrac{31}{13}\)
\(a,5x^3-3x^2+x-x^3-4x^2-x\)
\(=4x^3-7x^2\)
\(b,y^2+2y-2y^2-3y+3\)
\(=-y^2-y+3\)
\(c,\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1\)
\(=\frac{1}{6}x^3-2x^2-5x+1\)
\(d,\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2\)
\(=xy^2+\frac{1}{6}y^2\)
\(e,2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy\cdot y\)
\(=3xy-\frac{3}{2}z^2y+2zy^2\)
\(g,3^n+3^{n+2}\)
\(=3^n+3^n.3^2\)
\(=3^n\cdot10\)
\(h,1,5\cdot2^n-2^{n-1}\)
\(=1,5\cdot2^n-2^n\cdot\frac{1}{2}\)
\(=2^n\cdot1\)
\(=2^n\)
\(i,2^n-2^n-2\)
\(=-2\)
\(k,\frac{2}{3}\cdot3^n-3^{n-1}\)
\(=\frac{2}{3}\cdot3^n-3^n\cdot\frac{1}{3}\)
\(=3^n\cdot\frac{1}{3}\)
\(=\frac{3^n}{3}\)
sẵn bán nick luôn :)
Cái này hơi lâu thật,nhưng kiên trì 1 chút là đc ngay thôi bn !
a, \(5x^3-3x+x-x^3-4x^2-x=4x^3-3x-4x^2\)
b, \(y^2+2y-2y^2-3y+3=-y^2-y+3\)
c, \(\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1=-2x^2-5x+1\)
d, \(\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2=\frac{3}{4}xy^2-\frac{1}{2}y^2+\frac{1}{4}xy^2+\frac{2}{3}y^2=xy^2+\frac{1}{6}y^2\)
e, \(2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy.y=2xy-2yz^2+xy+\frac{1}{2}z^2y+2zy^2=3xy-\frac{3}{2}z^2y+2zy^2\)
g, \(3^n+3^{n+2}\)( chắc tối giản rồi,ko phân tích đc nữa. )
h, \(1,5.2^n-2^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )
i, \(2^n-2^n-2=-2\)
k, \(\frac{2}{3}.3^n-3^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )
Có j sai,mong mọi người góp ý,thông cảm ạ.
Ta có : a<b => a+a < a+b
=> 2a < a+b (1)
c<d => c+c < c+d
=> 2c < c+d (2)
m<n => m+m < m+n
=> 2m < m+n (3)
Từ (1); (2) và (3). => 2a + 2c +2m < a+b+c+d+m+n
=> 2(a+c+m) < a+b+c+d+m+n
=> \(\frac{a+c+m}{a+b+c+d+m+n}\)< \(\frac{1}{2}\)( đpcm)
Vì a<b;c<d;m<n
=>a+c+m<b+d+n
=>a+a+c+c+m+m<a+b+c+d+m+n
=>2a+2c+2m<a+b+c+d+m+n
=>2(a+c+m)<a+b+c+d+m+n
=>\(\frac{a+c+m}{2\left(a+c+m\right)}>\frac{a+c+m}{a+b+c+d+m+n}\)
=>\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
=>
ĐPCM.
l-i-k-e cho mình nha bạn.
Ta có : ˆA1A1^ và ˆA2A2^ là hai góc kề bù nên:
ˆA1+ˆA2=1800⇒ˆA2=1800−ˆA1=1800−1500=300A1^+A2^=1800⇒A2^=1800−A1^=1800−1500=300
Vì d1 // d2 và ˆA2A2^ so le trong với ˆB1B1^
⇒ˆB1=ˆA2=300⇒B1^=A2^=300
Vậy ˆB1=300
Gọi B giao điểm của a và d2.
d1 // d2 nên góc nhọn tại B bằng góc nhọn tại A và bằng
1800 - 1500= 300.
3. Tìm x biết: |15-|4.x||=2019
\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)
vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)
KL: x=508,5