K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Vì ABCD là hình chữ nhật và BCNM là hình bình hành nên ta có:

SABCD = BC. DC

SBCNM = MN. DC

Mà BC = MN (do BCNM là hình bình hành nên SABCD = SBCNM

Lại có: theo giả thiết SABCD = 25 cm2 => SBCNM = 25 cm2

Đáp án cần chọn là: A

Câu 3: 

a: Xét ΔABC có

M là trung điểm của BA

N la trung điểm của BC

Do đó: MN là đường trung bình

=>MN//AC và MN=AC/2(1)

Xét ΔADC có

Q là trung điểm của AD

P là trung điểm của DC

Do đó: QP là đường trug bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

b: Xét tứ giác MDPB có

MB//DP

MB=DP

Do đó: MDPB là hình bình hành

c: Xét ΔCDK có

P là trung điểm của CD

PL//DK

DO đó:L là trung điểm của CK

=>CL=LK(1)

Xét ΔALB có

Mlà trung điểm của AB

MK//LB

Do đó:K là trung điểm của AL

=>AK=KL(2)

Từ (1) và (2) suy ra AK=KL=LC

23 tháng 10 2018

A B C D O M N E F

a) Ta có:

+) M là trung điểm OD

\(\Rightarrow MD=MO=\frac{1}{2}OD\)

N là trung điểm OB

\(\Rightarrow NB=NO=\frac{1}{2}OB\)

Mà OD=OB ( O là giao điểm 2 đường chéo của hình bình hành ABCD)

Suy ra ON=OM=NB=MD (1)

Ta lại có OA=OC

Tứ giác AMCN có hai đường chéo cắt nhau tại trung điểm mỗi đường nên là hình bình hành

b) AMCN là hình bình hành =>NC//AM=> FC//AE mà AF//EC

Vậy suy ra AFCE là hình bình hành

O là trung điểm AC => O là trung điểm EF=> E đối xứng với F qua O

c) AC, BD, EF đều qua O nên đồng quy

d) Xét tam giác DNC có NC//ME

\(\Rightarrow\frac{DE}{EC}=\frac{DM}{MN}\)

Mà DM=OM=ON ( theo 1)

=> \(DM=\frac{1}{2}MN\)

=>\(\frac{DE}{EC}=\frac{DM}{MN}=\frac{1}{2}\Rightarrow DE=\frac{1}{2}EC\)

e) Để hình bình hành AMCN là hình chữ nhật thì MN=AC 

Mà \(MN=\frac{1}{2}BD\)nên \(AC=\frac{1}{2}BD\)

Vậy ABCD cần điều kiện là \(AC=\frac{1}{2}BD\)thì AMCN là hình chữ nhật

22 tháng 8 2018

Hình em tự vẽ nha.

a, ABCD là hình bình hành \(\Rightarrow\)2 đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường

Tứ giác AHCK có 2 đường chéo AC và HK tại trung điểm của mỗi đường \(\Rightarrow\)AHCK là hình bình hành

b, AHCK là hình bình hành \(\Rightarrow AH//CK\Leftrightarrow AM//NC\)

Tứ giác AMCN có: \(AN//MC\left(gt\right)\)

                               \(AM//NC\left(cmt\right)\)

\(\Rightarrow\)AMCN là hình bình hành \(\Rightarrow\)2 đường chéo AC và MN cắt nhau tại trung điểm O của AC \(\Rightarrow\)O là trung điểm của MN

15 tháng 8 2019

Cho  hình bình hành ABCD. Vẽ AH,CK vuông góc với đường chéo BD

a) C/m AHCK là hình bình hành

b)Gọi O là giao điểm của AC và BD. CM: 3 điểm H, K, O thẳng hàng

4 tháng 12 2016
Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh

b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân

c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
 
 
1 tháng 12 2016
  1. Bài 1
    a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
    và MN=1/2DC => MN= DE(2)
    từ (1)và (2) => MNED là hbh

    b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
    Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
    => tam giác ADM cân tại M => MDA = DAM
    => DEN= MAD (3)
    MN//DE=> MN//AE => AMNE là hình thang (4)
    từ (3)và (4) => AMNE là hình thang cân

    c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
    Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
     
    nhuquynhdat, 17 Tháng mười hai 2013
    #2
     
  2. nhuquynhdat

    nhuquynhdatGuest

     

    bài 2

    a) AB//CD => AB//CE(1)
    Xét tam giác ADE có AH là đg` cao
    lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
    => tam giác ADE cân tại A
    => ADE=AED(goác đáy tam giác cân)
    mặt khác ABCD là hình thang cân => ADC=góc C
    => góc C= AED
    mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
    từ (1)và (2) => ABCE là hbh

    b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
    DH=HE(gt)
    AE//DF(gt)=> AEH=FDH(SLT)
    =>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF

    c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
    mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
    lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg

6 tháng 11 2019

Mk vẽ hình trước bạn nhé ! Còn giải thì mk đang làm>>
o B A C D N F E M

8 tháng 11 2019

a. Ta có: ^ABD = ^CDB ( so le trong )  => ^NBO = ^MDO 

  Xét \(\Delta\)NBO và \(\Delta\)MBO 

có: ^NBO = ^MDO  ( chứng minh trên )

  OD = OB ( tính chất đường chéo hình bình hành)

^DOM = ^BON  ( đối đỉnh )

=>  \(\Delta\)NBO và \(\Delta\)MBO  (1)

=> ON = OM 

mà O nằm giữa M và N

=> M đối xứng vs N qua O

b.  (1) => BN = DM và AB = DC => \(\frac{DM}{DC}=\frac{BN}{AB}\)(2)

Có: NF // AC => \(\frac{NF}{AC}=\frac{BN}{AB}\)(3)

ME//AC => \(\frac{ME}{AC}=\frac{DM}{DC}\)(4)

(2 ); (3) ; (4) => \(\frac{ME}{AC}=\frac{NF}{AC}\)

=> ME = NF mặt khác ME //NF ( //AC )

=> NFME là hình bình hành.

21 tháng 4 2017

Ta có SABCD = AB. AD = 828 m2

Nêm AD = 8282382823 = 36 (m)

Do đó diện tích của hình thang ABED là:

SABED= (AB+DE).AD2(AB+DE).AD2 = (23+31).362(23+31).362 = 972(m2)

21 tháng 4 2017

Ta có SABCD = AB. AD = 828 m2

Nêm AD = 8282382823 = 36 (m)

Do đó diện tích của hình thang ABED là:

SABED= (AB+DE).AD2(AB+DE).AD2 = (23+31).362(23+31).362 = 972(m2)



21 tháng 4 2017

Hình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.

Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước:

- Lấy nột cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB.

- Vẽ đường thẳng EF.

- Từ A và b vẽ các đường thẳng vuông góc với đường thẳng EF, chúng cắt đường thẳng EF lần lượt tại D, C. vẽ các đoạn thẳng AD, BC. ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho



Diện tích hình thang

Hướng dẫn giải:

Hình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.

Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước:

- Lấy nột cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB.

- Vẽ đường thẳng EF.

- Từ A và b vẽ các đường thẳng vuông góc với đường thẳng EF, chúng cắt đường thẳng EF lần lượt tại D, C. vẽ các đoạn thẳng AD, BC. ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho