Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\)
2
b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)
Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\) và \(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)
1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc
1b ) Như trên
2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)
\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa là.................
Bài 4:
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)
c: Ta có: ΔBAE cân tại B
mà BI là đường phân giác
nên I là trung điểm của AE
hay IA=IE
Ta có: BA=BE
DA=DE
Do đó: BD là đường trung trực của AE
=>BD vuông góc với AE
Ta có:
\(\widehat{D_1}-\widehat{D_2}=4^0\Rightarrow\widehat{D_1}=4+\widehat{D_2}\) (1)
Ta lại có: \(\widehat{D_1}+\widehat{D_2}=180^0\) (2)
thế (1) vào (2), ta được:
\(\widehat{D_1}+\widehat{D_2}=180^0\)
\(\Rightarrow4^0+\widehat{D_2}+\widehat{D_2}=180^0\)
\(\Rightarrow4+2.\widehat{D_2}=180^0\)
\(\Rightarrow\widehat{D_2}=88^0\)
\(\Rightarrow\widehat{D_1}=88+4=92^0\)
\(\Rightarrow\widehat{E_4}=92^0\)
Do góc D1-D2=4 dộ
Mà D1+D2=180 độ
=> D1=92 độ
Vì D1=EDb=92 độ( đối đỉnh)
Mà c//b=> EDb=E4=92 độ
Đáp số : ^E4=92 độ
Từ \(b^2=ac\)\(\Rightarrow\frac{b}{a}=\frac{c}{b}\)(1)
Từ \(c^2=bd\)\(\Rightarrow\frac{c}{b}=\frac{d}{c}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{b}{a}=\frac{c}{b}=\frac{d}{c}\)
\(\Rightarrow\left(\frac{b}{a}\right)^3=\left(\frac{c}{b}\right)^3=\left(\frac{d}{c}\right)^3=\frac{b^3}{a^3}=\frac{c^3}{b^3}=\frac{d^3}{c^3}=\frac{b^3+c^3+d^3}{a^3+b^3+c^3}\)
mà \(\left(\frac{b}{a}\right)^3=\frac{b}{a}.\frac{b}{a}.\frac{b}{a}=\frac{b}{a}.\frac{c}{b}.\frac{d}{c}=\frac{b.c.d}{a.b.c}=\frac{d}{a}\)
\(\Rightarrow\frac{b^3+c^3+d^3}{a^3+b^3+c^3}=\frac{d}{a}=\left(\frac{b}{a}\right)^3\left(đpcm\right)\)
Bạn giải thích cho mk là vì sao \(\frac{b}{a}=\frac{b}{a}=\frac{b}{a}=\frac{b}{a}.\frac{c}{b}.\frac{d}{c}\) với ạ? Mk k hiểu chỗ này
Bài 2:
Đặt số đo góc B là x, số đo góc C là y
Theo đề, ta có:
\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)
a: Ta có: AC\(\perp\)AB
BD\(\perp\)AB
Do đó: AC//BD
b: bạn vẽ lại hình nha bạn