Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: dong vi
b: trong cung phia
c :đổng vị
d :ngoài cùng phía
e :???
g:CDE,MED
h:DBC,EBA
a)...đồng vị
b)...trong cùng phía
c)...đồng vị
d)...ngoài cùng phía
e)...so le trong
g)...MED và EDC
h)...MED và EBC
tớ thấy cậu ghi sai đề rồi tớ chỉ làm theo sách
a) ˆIPOIPO^ và ˆPORPOR^ là một cặp góc so le trong..........
b) ˆOPIOPI^ và ˆTNOTNO^ là một cặp góc .....đồng vị.....
c) ˆPIOPIO^ và ˆNTONTO^ là một cặp góc ....đồng vị.....
d) ˆOPROPR^ và ˆPOIPOI^ là một .cặp góc so le trong
.........
a) ˆB3B3^
b) ˆB2B2^
c) 1800 ; là cặp góc trong cùng phía
d) Bằng cặp góc so le trong ˆB2B2^=ˆA4A4^.
a) \(\widehat{A_1}\)\(=\widehat{B_3}\)(vì là cặp góc so le trong)
b)\(\widehat{A_2}\)\(=\widehat{B_2}\)(vì là cặp góc đồng vị)
c)\(\widehat{B_3}\)\(+\widehat{A_4}\)\(=180^0\)(vì là cặp góc trong cùng phía)
d)\(\widehat{A_2}\)\(=\widehat{B_4}\)(vì là cặp góc cùng bằng \(\widehat{A_4}\) )
Ủng hộ mk nhé!!! ^.^
Câu 1:
Giải:
Ta có: \(15x=\left(-10\right)y=6z\Rightarrow\frac{15x}{30}=\frac{\left(-10\right)y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k,y=-3k,z=5k\)
Mà \(xyz=-30000\)
\(\Rightarrow2k\left(-3\right)k5k=-30000\)
\(\Rightarrow\left(-30\right).k^3=-30000\)
\(\Rightarrow k^3=1000\)
\(\Rightarrow k=10\)
\(\Rightarrow x=20;y=-30;z=50\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(20;-30;50\right)\)
Câu 3:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
\(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\)
Tương tự ta có b = c, c = d, d = a
\(\Rightarrow a=b=c=d\)
\(\Rightarrowđpcm\)
3, áp dụng tính chất dãy tỉ số bằng nhau:
=>\(\frac{a}{3.b}\)=\(\frac{b}{3.c}\)=\(\frac{c}{3.d}\) =\(\frac{d}{3.a}\) =\(\frac{a+b+c+d}{3\left(b+c+a+d\right)}\) =\(\frac{1}{3}\)
\(\Rightarrow\)\(\frac{a}{3b}\)=\(\frac{1}{3}\) =>\(\frac{1.b}{3.b}\) =\(\frac{b}{3.b}\) =>\(\frac{a}{3b}\) =\(\frac{b}{3b}\) =>...a=b (1)
\(\frac{c}{3d}\)=\(\frac{1}{3}\) =>\(\frac{1.d}{3.d}\) =\(\frac{d}{3d}\) =>\(\frac{c}{3d}\) =\(\frac{d}{3d}\) =>...c=d (2)
\(\frac{b}{3c}\) =\(\frac{1}{3}\) =>\(\frac{1.c}{3.c}\) =\(\frac{c}{3c}\)=>\(\frac{b}{3c}\) =\(\frac{c}{3c}\)=>..b=c (3)
\(\frac{d}{3a}\)=\(\frac{1}{3}\) =>\(\frac{1.a}{3.a}\) =\(\frac{a}{3a}\)=>\(\frac{d}{3a}\) =\(\frac{a}{3a}\)...=>d=a (4)
từ (1).(2).(3)(4)=>a=b=c=d(dpcm)
a). đồng vị
b). so le trong
c). kề bù
d). đối đỉnh
e). trong cùng phía