Cho hình vẽ bên biết a // b và  A 1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

a) Ta có: A 1 ^    +    A 2 ^    +    A 3 ^    =    310 ° mà A 2 ^    +    A 3 ^    =    180 ° ( hai góc kề bù)

do đó A 1 ^ = 310 ° − 180 ° = 130 ° .

b) Ta có: B 2 ^ = A 2 ^  (hai góc đồng vị);  B 2 ^ = B 4 ^  (hai góc đối đỉnh).

Suy ra  A 2 ^ = B 4 ^

2 tháng 11 2021
Sô ươc cua 23 la mây?
NM
8 tháng 11 2021

a. ta có : \(\frac{5}{-3}=\frac{15}{-9}=-\frac{15}{9}\)

b.\(-\frac{1}{5}< 0< \frac{1}{100}\Rightarrow-\frac{1}{5}< \frac{1}{100}\)

c.\(\hept{\begin{cases}2^3=8\\3^2=9\end{cases}\Rightarrow2^3< 3^2}\)

26 tháng 8 2021

\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)

Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)

Ta có : \(a=b.k\)  

            \(b=c.k\)

\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)

\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)

Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)

Hok tốt~

20 tháng 4 2017

Vì a // b nên ta có:

a) ^B1 = ^A4 = 37° (2 góc so le trong)

Vậy ^B1 = 37°.

b) ^A1 = ^B4 (2 góc đồng vị).

c) ^B2 + ^A4 = 180° (2 góc trong cùng phía)

hay ^B2 + 37° =180°.

=> ^B2 = 180° - 37° = 143°.

Vậy ^B2 = 143°.

20 tháng 4 2017

undefined

27 tháng 11 2021

a) Vì x và y là hai địa lượng tỉ lệ nghịch 

\(y=\frac{a}{x}=a=x.y\)

Thay \(a=2.4\)

Vậy \(a=8\)

b) \(x=\frac{a}{y}\)

c) Vì x là y là hai đại lượng tỉ lệ nghịch

\(x=\frac{a}{y}=x=\frac{a}{y}\)

Thay \(x=\frac{8}{-1}\); Thay \(x=\frac{8}{2}\)

\(\hept{\begin{cases}x=4\\x=8\end{cases}}\)

Bài làm

a) Ta có:

\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)

\(P\left(x\right)=x^5-2x^2+7x^4-9x^3-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)

\(Q\left(x\right)=5x^4-x^5-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)

Vậy \(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)

Vậy \(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)

c) Ta có: 

\(P\left(1\right)=1^5+7.1^4-9.1^3-2.1^2-\frac{1}{4}.1\)

\(P\left(1\right)=-\frac{13}{4}\)

Vậy giá trị của biểu thức P = -13/4 khi x = 1

\(Q\left(0\right)=-0^5+5.0^4-2.0^3+4.0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(Q\left(0\right)=-\frac{1}{4}\)

14 tháng 5 2021

Cảm ơn bạn nha!

26 tháng 8 2021

A= 3x3 - (3x -2)x2  - 2x(x+1)

A= 3x3 - 3x3 + 2x2 - 2x2 -2x

A= -2x

Thay x =-20 vào A ta được:

A = -2.(-20) = 40

Vậy A= 40 khi x = -20 

b) C= x(2x+1) - x2(x+2) + x3 -x + 3

C= 2x2 + x - x3 - 2x2 + x3 -x +3

C= (2x2 - 2x2) + (x-x) - (x3 -x3) +3 

C = 3

Vậy C= 3

AH
Akai Haruma
Giáo viên
27 tháng 7 2024

Lời giải:

$b.b=ac\Rightarrow \frac{b}{c}=\frac{a}{b}$.
Đặt $\frac{b}{c}=\frac{a}{b}=k\Rightarrow b=ck; a=bk$.

Khi đó:

$\frac{a}{c}=\frac{bk}{c}=\frac{ck.k}{c}=k^2(1)$

Và:

$\frac{(a+2011b)^2}{(b+2011c)^2}=\frac{(bk+2011b)^2}{(ck+2011c)^2}$

$=\frac{b^2(k+2011)^2}{c^2(k+2011)^2}=\frac{b^2}{c^2}=\frac{(ck)^2}{c^2}=k^2(2)$

Từ $(1);(2)$ ta có đpcm.

 

30 tháng 8 2017

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)

= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)

= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)

\(\dfrac{51}{2.50}=\dfrac{51}{100}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)

Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)

Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)

b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:

\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)

\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)

\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)

\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)

\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)