K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

A B C D O

Xét tam giác ABC và tam giác ADC có đáy AB = 1/3 đáy CD; chiều cao hạ từ C xuống AB = chiều cao hạ từ A xuống CD

=> S(ABC) = 1/3 x S(ACD)

Mặt khác, hai tam giác này có chung đáy AC nên Chiều cao hạ từ B xuống AC = 1/3 chiều cao hạ từ D xuống AC

+) Xét tam giác AOB và tam giác AOD có : chung đáy AO; 

 Chiều cao hạ từ B xuống AC = 1/3 chiều cao hạ từ D xuống AC

=> S(AOB) = 1/3 x S(AOD) 

=> S(AOB) = 1/4 xS(ABD)   (1)

+) Ta có: S(ABD) = S(ABC) = 1/3 x S(ACD)

=> S(ABD) = S(ABC) = 1/4 x S(ABCD) = 1/4 x 96 = 24 cm2

 Từ (1) => S(AOB) = 1/4 x 24 = 6 cm2

12 tháng 2 2017

dễ như thế mà ko làm được 

10 tháng 4 2022

chịu thui

 

 

15 tháng 5 2022

ko bt

21 tháng 8 2017

Ta có hình vẽ : 

O A B C D

21 tháng 8 2017

b) Ta có : 

\(S_{ABC}=\frac{1}{2}S_{ADC}\)

- Có chiều cao bằng chiều cao hình thang 

- Đáy AB = 1/2 DC

Mặt khác vì hai tam giác có chung đáy AC nên chiều cao hạ từ B xuống O sẽ bằng 1/2 chiều cao hạ từ D xuống O

Từ đó ta có thể suy ra : BO = 1/2 DO (1)

Ta có : \(S_{AOB}=\frac{1}{2}S_{AOD}\)

- Chung cao hạ từ A xuống O

- Đáy BO = 1/2 DO (1)

Hay \(S_{AOB}=\frac{1}{3}S_{ABD}\)

\(\Rightarrow S_{AOB}=\frac{1}{3}\cdot\frac{1}{3}=\frac{1}{9}S_{ABCD}\)

NM
18 tháng 3 2022

ta có : undefined

2 tháng 5 2024

Mình chịu lun í

23 tháng 8 2017

Bài làm

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

17 tháng 2 2022

ảo à