Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có d D ; A B ' C = d B ; A B ' C mà A M A D = 3 4
Và 1 d 2 B ; A B ' C = 1 A B 2 + 1 B C 2 + 1 B B ' ⇒ d M ; A B ' C = a 2 .
Gọi E, F lần lượt là trung điểm của AD’, B’C.
Suy ra EF là đoạn vuông góc chung cuả AD’, B’C.
Do đó d A D ' ; B ' C = E F = A B = a . Vậy x y = a . a 2 = a 2 2 .
Đáp án D
Phương pháp: Sử dụng phương pháp tọa độ hóa.
Cách giải:
Gắn hệ trục Oxyz, có các tia Ox, Oy, Oz lần lượt trùng với các tia AB, AD, AA’.
A(0;0;0), B(1;0;0), C(1;2;0), D(0;2;0), A’(0;0;3), B’(1;0;3), C’(1;2;3), D’(0;2;3)
(P) cắt các tia AB, AD, AA’ lần lượt tại E, F, G (khác A). Gọi E(a;0;0), F(0;b;0), G(0;0;c), (a,b,c > 0)
Phương trình mặt phẳng (P): x a + y b + c z = 1
Thể tích tứ diện AEFG:
Ta có:
=>Vmin = 27 khi và chỉ khi
Khi đó, T = AE + AF + AG = a + b + c = 3 + 6 + 9 = 18