Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TỰ VẼ HÌNH NHA BN :
a)Áp dụng định lí PY-ta-go vào tam giác uông ABC có:
BC^2=AB^2+AC^2
BC^2=6^2+8^2
BC^2=36+64
BC^2=100
BC^2=\(\sqrt{100}\)=>BC=10cm
Các bạn làm câu b,c,d giúp mình đi câu a mình tụ làm đc rùi
Đáp án A
Theo giả thết ta có: ∆ A A ' B ⊥ ⇒ A B ⊥ A ' B ∆ A ' C D ⊥ ⇒ C D ⊥ A ' D ⇒ A B ⊥ A ' D ⇒ A B ⊥ ( A ' B D ) ⇒ A B ⊥ B D ⇒ B D = A D 2 - A B 2 = 5 a 2 - a 2 = 2 a ⇒ S A B C D = 2 S A B D = A B . A D = a . 2 a = 2 a 2
Kẻ đường cao AH trong ∆ A'BD , góc giữa AB' và (ABCD) là góc A'BH= 45 °
Do B'C // A'D nên góc giữa B'C và (ABCD) là góc A'DH= 45 ° ⇒ ∆ A ' B D vuông cân ⇒ A ' H = B D 2 = 2 a 2 = a từ đây tính được V A B C D . A ' B ' C ' D ' = A ' H . S A B C D = a . 2 a 2 = 2 a 3
Ta có Pt d2 :x+2y-5=0
vì M ϵ d1 :x-y-1=0 nên M(m,m-1)
MA2 = (-1-m)2 + (2-m+1)2 = 1+2m+m2 +9-6m+m2 =2m2 -4m+10
<=> MA=\(\sqrt{2m^2-4m+10}\)
d(m,d2 )= \(\frac{\left|m+2m-2-5\right|}{\sqrt{1^2+2^2}}\) =\(\frac{\left|3m-7\right|}{\sqrt{5}}\)
theo bài ra thì MA=d(M,d2)
=>\(\frac{\left|3m-7\right|}{\sqrt{5}}\)=\(\sqrt{2m^2-4m+10}\) <=>|3m-7|=\(\sqrt{5}\)\(\sqrt{2m^2-4m+10}\)
<=>9m2 -42m +49=5(2m2-4m+10)
<=>9m2 -42m +49=10m2 -20m +50
<=>m2 +22m +1=0
<=>m= -11+2\(\sqrt{30}\) hoặc m=-11-2\(\sqrt{30}\)
=> M(-11+2\(\sqrt{30}\) ,-12+2\(\sqrt{30}\) ) hoặc M(-11-2\(\sqrt{30}\) ,-12-2\(\sqrt{30}\) )
a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC
b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM
c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.