K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

Giải

a) Từ giả thiết: \(\dfrac{AM}{MB}=\dfrac{7}{4}\Rightarrow\) \(\dfrac{\left(AM+MB\right)}{AM}=\dfrac{\left(7+4\right)}{7}=\dfrac{11}{7}\)

hay \(\dfrac{AB}{AM}=\dfrac{11}{7}:\dfrac{AM}{MB}=\dfrac{7}{4}\)

\(\Rightarrow\dfrac{AM+MB}{MB}=\dfrac{7+4}{4}=\dfrac{11}{4}\) hay \(\dfrac{AB}{BM}=\dfrac{11}{4}\)

b) Ta có: CB = AB - CA = 6cm - 3,6cm = 2,4cm

DA = AB + BD = 6 + BD

Từ giả thiết: \(\dfrac{DA}{DB}=\dfrac{CA}{CB}=\dfrac{3.6}{2.4}=\dfrac{3}{2}\)

\(\Rightarrow\dfrac{\left(DB+6\right)}{DB}=\dfrac{3}{2}\)

\(\Rightarrow\) 2DB + 12 = 3DB \(\Rightarrow\) DB = 12 cm

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

10 tháng 11 2018

giải đi người ta t.i.c.k cho

18 tháng 12 2017

1/ a/ BC = \(\sqrt{5^2+12^2}\)= 13 (cm) (định lí Pytago)

Vì AM là đường trung tuyến ứng với cạnh BC nên AM = 1/2 BC = 1/2 x 13 = 6,5 (cm)

b/ Ta có: \(\widehat{DAE}=\widehat{MDA}=\widehat{MEA}=\)90 độ 

=> Tứ giác ADME là hình chữ nhật

c/ AM là phân giác của \(\widehat{BAC}\) 

[ học toán ngu nhất là cm câu c :"< mấy câu giống vậy anh bỏ hết ]

20 tháng 12 2017

thanks bạn nke^^

5 tháng 4 2020

a) Gọi E là trung điểm BK

Chứng minh được QE là đường trung bình \(\Delta\)KBC nên QE//BC => QE _|_ AB (vì BC_|_AB) và \(QE=\frac{1}{2}BC=\frac{1}{2}AD\)

Chứng minh AM=QE và AM//QE => Tứ giác AMQE là hình bình hành

Chứng minh AE//NP//MQ (3) 

Xét \(\Delta AQB\)có BK và QE là 2 đường cao của tam giác

=> E là trực tâm tam giác nên AE là đường cao thứ 3 của tam giác AE _|_ BQ

=> BQ _|_ NP

b) Vẽ tia Ax vuông góc với AF. Gọi giao Ax và CD là G

Chứng minh \(\widehat{GAD}=\widehat{BAP}\)(cùng phụ \(\widehat{PAD}\)

=> \(\Delta\)ADG ~ \(\Delta\)ABP (gg) => \(\frac{AP}{AG}=\frac{AB}{AD}=2\Rightarrow AG=\frac{1}{2}AP\)

Ta có \(\Delta\)AGF vuông tại A có AD _|_ GF nên AG.AF=AD.GF(=2SAGF)

=> \(AG^2\cdot AF^2=AD^2\cdot GF^2\left(1\right)\)

Ta chia cả 2 vế củ (1) cho \(AD^2\cdot AG^2\cdot AF^2\)

Mà \(AG^2+AF^2=GF^2\)(định lý Pytago)

\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AG^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{\left(\frac{1}{2}AB\right)^2}=\frac{1}{\left(\frac{1}{2}AP\right)^2}+\frac{1}{AF^2}\)

\(\Rightarrow\frac{4}{AB^2}=\frac{4}{AP^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)

5 tháng 4 2020

Cảm ơn nhiều ạ!

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là...
Đọc tiếp

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .

Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là đường thẳng AB) sao cho các tia MA, MB tạo với đường thẳng d một tam giác có diện tích nhỏ nhất.

Bài 8: Cho tam giác ABC, trên cạnh BC, CA và AB lần lượt lấy các điểm M, N và P sao cho: a) Chứng minh rằng: AM, BN, CP là độ dài ba cạnh của một tam giác mà ta kí hiệu là \(\Delta\)(k). b) Tìm k để diện tích tam giác \(\Delta\)(k) nhỏ nhất.

0
16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50