K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

d) Gọi F là giao điểm của BK và QC. Ta có O là trung điểm của BD và OQ // BK (gt) nên Q là trung điểm của DF.

Lại có QK // BD (gt); Q là trung điểm của DF ⇒ K là trung điểm của BF.

CK là trung tuyến của tam giác vuông BCF ⇒ CK = BK = BC/2.

Ta có QK là đường trung bình của tam giác

⇒ QK = BO = BD/2; QK // BO

⇒ Tứ giác OBKQ là hình bình hành

Mặt khác ∠(OBQ) = 90o ⇒ OBKQ là hình chữ nhật

⇒ ∠(OBK) = 90o

Xét ΔOCK và ΔOBK có

CK chung

OC = OB (tính chất đường chéo hình chéo hình chữ nhật)

CK = BK (cmt)

Vậy ΔOCK = ΔOBK (c.c.c) ⇒ ∠OCK = ∠OBK = 90o hay AC ⊥ CK.

a: Xét tứ giác BMDN có

BN//DM

BN=DM

Do đó: BMDN là hình bình hành

Suy ra: BM//DN

b: Ta có: BMDN là hình bình hành

nên BD cắt MN tại trung điểm của mỗi đường(1)

Ta có: ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,BD,MN đồng quy

25 tháng 1 2019

??????????????????????

25 tháng 1 2019

A B C D M E F K H S I J

a) Bằng tính chất của hình bình hành và hệ quả ĐL Thales ta có: 

\(\frac{KM}{KH}=\frac{BF}{BC}=\frac{MF}{DC}=\frac{MF}{EF}\). Suy ra KF // EH (Theo ĐL Thales đảo) (đpcm).

b) Gọi giao điểm của EK và HF là S. Ta đi chứng minh B,D,S thẳng hàng. Thật vậy:

Gọi MS cắt EH và KF lần lượt ở I và J.

Theo bổ đề hình thang (cho hình thang KEHF) thì I là trung điểm EH và J là trung điểm KF

Do các tứ giác BKMF và DEMH là hình bình hành nên BD đi qua trung điểm của EH và KF 

Từ đó suy ra: 2 đường thẳng BD và MS trùng nhau hay 3 điểm B,D,S thẳng hàng => ĐPCM.

c) Dễ thấy: SKEF = SKHF (Chung đáy KF, cùng chiều cao vì KF//EH) => SKME = SFMH 

Mà SMKAE = 2.SKME; SMHCF = 2.SFMH nên SMKAE = SMHCF (đpcm).

NV
10 tháng 3 2023

Đề sai rồi, em kiểm tra lại, EK, HF và BD ko hề đồng quy

10 tháng 3 2023

Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB < MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M song song với AD cắt AB và AC lần lượt tại K và H.

1. Chứng minh: các đường thẳng EK, HF, BD đồng quy

2. Cho SMKF = 9 cm2 ; SMEH = 25 cm2 . Tính SABCD.

 
18 tháng 7 2023

A B C D O M N P Q

a/

Ta có

MN//AB (gt)

AD//BC=> AM//BN

=> AMNB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có

AB//CD => AP//CQ mà AP = CQ (gt) => APCQ là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)

b/

Xét hbh ABCD 

OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Xét hbh APCQ có

IA=IC  (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> \(I\equiv O\) (đều là trung điểm AC) => M; N; I thẳng hàng

c/ Do \(I\equiv O\) (cmt) => AC; MN; PQ đồng quy tại O