K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

s B A D C O M

 

Hình chiếu vuông góc của SA lên (ABCD) là AO nên góc giữa SA và (ABCD) là \(\widehat{SAO}\)

Xét \(\Delta SAO\left(\perp O\right)\) ta có : \(SA=\frac{a\sqrt{5}}{2};AO=\frac{1}{2}AC=\frac{1}{2}a\sqrt{2}\)

\(\cos\widehat{SAO}=\frac{AO}{SA}=\frac{\frac{a\sqrt{2}}{2}}{\frac{a\sqrt{5}}{2}}=\frac{\sqrt{10}}{5}\)

c. Xét \(\Delta SOC\) có : \(\begin{cases}SO\perp BD\\OC\perp BD\end{cases}\) nên \(\left(SOC\right)\perp BD\) mà \(OM\subset\left(SOC\right)\Rightarrow OM\perp BD\)

xét : \(\left(MBD\right)\cap\left(ABCD\right)=BD\)

Trong (MBD) có \(OM\perp BD\)

Trong (ABCD) có \(OC\perp BD\)

Vậy góc giữa (MBD) và (ABCD) là \(\widehat{MOC}\)

Ta có : \(\Delta SAC\) đồng dạng với \(\Delta MOC\) (vì \(CM=\frac{1}{2}CS;CO=\frac{1}{2}CA\))nên \(\widehat{MOC}=\widehat{SAC}\)

NV
15 tháng 8 2020

a/

\(0\le sin^2x\le1\Rightarrow-2\le f\left(x\right)\le1\)

\(f\left(x\right)_{min}=-2\) khi \(sin^2x=1\)

\(f\left(x\right)_{max}=1\) khi \(sin^2x=1\)

b/

\(g\left(x\right)=1-cos^2x+3cosx-2=-cos^2x+3cosx-1\)

\(=-cos^2x+3cosx-2+1=\left(cosx-1\right)\left(2-cosx\right)+1\)

Do \(-1\le cosx\le1\Rightarrow\left\{{}\begin{matrix}cosx-1\le0\\2-cosx>0\end{matrix}\right.\)

\(\Rightarrow\left(cosx-1\right)\left(2-cosx\right)\le0\Rightarrow g\left(x\right)\le1\)

\(g\left(x\right)_{max}=1\) khi \(cosx=1\)

\(g\left(x\right)=-cos^2x+3cosx+4-5=\left(cosx+1\right)\left(4-cosx\right)-5\)

\(\left(cosx+1\right)\left(4-cosx\right)\ge0\Rightarrow g\left(x\right)\ge-5\)

\(g\left(x\right)_{min}=-5\) khi \(cosx=-1\)

NV
1 tháng 5 2019

S A B C D H M N O

Cần câu d thôi đúng ko bạn?

\(ID\) cắt (SAC) tại A mà \(IA=2DA\Rightarrow d\left(I;\left(SAC\right)\right)=2d\left(D;\left(SAC\right)\right)\)

\(BD\) cắt (SAC) tại O mà \(OB=OD\Rightarrow d\left(D;\left(SAC\right)\right)=d\left(B;\left(SAC\right)\right)\)

Mặt khác \(BA=2HA\Rightarrow d\left(B;\left(SAC\right)\right)=2d\left(H;\left(SAC\right)\right)\)

\(\Rightarrow d\left(I;\left(SAC\right)\right)=4d\left(H;\left(SAC\right)\right)\)

Từ H kẻ \(HM\perp AC\), từ H kẻ \(HN\perp SM\Rightarrow HN=d\left(H;\left(SAC\right)\right)\)

Áp dụng hệ thức lượng: (chú ý rằng \(AH=\frac{AB}{2}=\frac{a}{2};OH=\frac{AD}{2}=\frac{a\sqrt{2}}{2}\))

\(\frac{1}{HM^2}=\frac{1}{AH^2}+\frac{1}{OH^2}\Rightarrow HM=\frac{AH.OH}{\sqrt{AH^2+OH^2}}=\frac{a\sqrt{6}}{6}\)

\(\frac{1}{HN^2}=\frac{1}{SH^2}+\frac{1}{HM^2}\Rightarrow HN=\frac{SH.HM}{\sqrt{SH^2+HM^2}}=\frac{a\sqrt{57}}{19}\)

\(\Rightarrow d\left(I;\left(SAC\right)\right)=\frac{4a\sqrt{57}}{19}\)

1 tháng 5 2019

cho em hỏi gửi câu hỏi lên sao vậy ạ.

NV
9 tháng 6 2020

Dễ dàng chứng minh \(SH\perp\left(ABCD\right)\)

Gọi N là trung điểm SH \(\Rightarrow MN//HC\) (đường trung bình)

Trong mặt phẳng đáy, qua D kẻ đường thẳng song song HC cắt BA kéo dài tại P

\(\Rightarrow HC//\left(MNPD\right)\Rightarrow d\left(HC;DM\right)=d\left(HC;\left(MNPD\right)\right)=d\left(H;\left(MNPD\right)\right)\)

Trong mặt phẳng đáy, từ H kẻ \(HE\perp DP\)

\(\Rightarrow DP\perp\left(HEN\right)\)

Trong tam giác vuông HEN, từ H kẻ \(HF\perp EN\Rightarrow\left\{{}\begin{matrix}HF\perp EN\\HF\perp DP\end{matrix}\right.\)

\(\Rightarrow HF\perp\left(MNPD\right)\Rightarrow HF=d\left(H;\left(MNPD\right)\right)\)

\(SH=\frac{AB\sqrt{3}}{2}\Rightarrow SH=\frac{a\sqrt{3}}{2}\Rightarrow NH=\frac{a\sqrt{3}}{4}\)

\(AP=AH=\frac{a}{2}\Rightarrow DP=\sqrt{AP^2+AD^2}=\frac{3a}{2}\)

\(PH=CD=a\Rightarrow HE=PH.sin\widehat{DPA}=PH.\frac{AD}{DP}=\frac{2a\sqrt{2}}{3}\)

\(\frac{1}{HF^2}=\frac{1}{HE^2}+\frac{1}{NH^2}\Rightarrow HF=\frac{HE.NH}{\sqrt{HE^2+NH^2}}=a\sqrt{\frac{24}{155}}\)

NV
27 tháng 4 2020

a/ \(y=3x+2\)

b/ \(y=-\frac{1}{4}x+1\)

c/ \(y=\frac{1}{6}x+\frac{3}{2}\)

d/ \(y=-32x-48\)