K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Đáp án B

Dễ thấy: S C H ^ = 45 ∘  Gọi H là trung điểm của AB ta có  S H ⊥ A B ⇒ S H ⊥ A B C D .

Ta có: S H = H C = a 17 2 .  

Ta có:  d = d M , S A C = 1 2 d D , S A C

Mà 1 2 d D , S A C = 1 2 d B , S A C  nên  d = d H , S A C

Kẻ H I ⊥ A C , H K ⊥ S I ⇒ d H , S A C = H K  

Ta có: H I = A B . A D 2 A C = a 5 5  

Từ đó suy ra: d = H K = S H . H I S I = a 1513 89 .  

5 tháng 4 2017

Đáp án D

Phương pháp: Đưa khoảng cách từ M đến (SAC) về khoảng cách từ H đến (SAC).

Cách giải: Gọi H là trung điểm của AB ta có SH ⊥ (ABCD)

Ta có (SC;(ABCD)) = (SC;HC) = Góc SCH =  45 0

=>∆SHC vuông cân tại H => 

 

Trong (ABD) kẻ HIAC,trong (SHI) kẻ HKSI ta có:

Ta có ∆AHI: ∆A CB(g.g) => 

7 tháng 2 2017

Đáp án là D

+ Gọi O là giao điểm của AC,BD

MO \\ SB ⇒ SB \\ ACM

d  SB,ACM = d B,ACM = d D,ACM  .

+ Gọi I là trung điểm của AD ,

M I \ \ S A ⇒ M I ⊥ A B C D d     D , A C M     = 2 d     I , A C M  .

+ Trong ABCD: IK ⊥ AC  (với K  ∈ AC ).

+ Trong MIK: IH ⊥ MK  (với H ∈ MK ) (1)  .

+ Ta có: AC ⊥  MI ,AC ⊥  IK ⇒  AC ⊥  MIK

  ⇒  AC ⊥  IH (2) .

Từ 1 và 2 suy ra

IH ⊥  ACM ⇒  d  I ,ACM  = IH  .

+ Tính IH ?

- Trong tam giác vuông MIK. : I H = I M . I K I M 2 + I K 2 .

- Mặt khác: M I = S A 2 = a , I K = O D 2 = B D 4 = a 2 4

⇒ I H = a a 2 4 a 2 + a 2 8 = a 3

Vậy   d     S B , A C M = 2 a 3 .

Lời giải khác

24 tháng 3 2019

5 tháng 8 2018

Đáp án B

9 tháng 11 2017

Chọn C

30 tháng 3 2018

Đáp án C

 

Gọi  O = A C ∩ B D , G = A O ∩ A C '

Ta có A C ⊥ ( S B D )  mặt khác S C ⊥ B ' D ' ⇒ B ' D ' ⊥ ( S A C ) ⇒ B ' D ' / / B D  

Theo Định lý Talet ta có S B ' B ' B = S D ' D ' D = S G G O = 2 ⇒ G  là trọng tâm ∆ S A C ⇒ C '  là trung điểm SC

Vậy  V S A B ' C ' D ' V S A B C D = V S A B ' C ' + V S A C ' D ' V S A B C D = 1 2 ( V S A B ' C ' V S A B C + V S A C ' D ' V S A C D ) = 1 2 S B ' . S C ' S B . S C + S C ' . S D ' S C . S D

21 tháng 8 2019

B

2 tháng 8 2017

Gọi H là trung điểm của AC

Đỉnh S cách đều các điểm A, B, C 

Xác đinh được 

Ta có MH//SA 

Gọi I là trung điểm của AB 

 và chứng minh được 

Trong tam giác vuông SHI tính được 

Chọn A.