Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi N là trung điểm của BC, dựng hình bình hành ABNP.
Ta có:
Mà
Chọn: B
Xác định được
Khi đó ta tính được
Trong mặt phẳng (ABC) lấy điểm D sao cho ABCD là hình chữ nhật
=> AB//CD nên
Xét tam giác vuông SAD có
Chọn C.
Đáp án A
Do S A ⊥ A B C nên góc giữ SC và A B C là góc S C A ^ = 60 °
Vì Δ A B C vuông tại B nên A C = 5 a ⇒ S A = 5 a 3
Gọi N là trung điểm BC nên M N / / A B ⇒ A B / / S M N
d A B , S M = d A B , S M N = d A , S M N .
Từ A kẻ đường thẳng song song vơi BC cắt MN tại D.
Do B C ⊥ A B ⇒ B C ⊥ M N ⇒ A D ⊥ M N .
Từ A kẻ AH vuông góc vơi SD
Ta có M D ⊥ A D M D ⊥ S A ⇒ M D ⊥ S A D ⇒ M D ⊥ A H
Mà A H ⊥ S D ⇒ A H ⊥ S M D hay A H ⊥ s m n ⇒ d A , S M N = A H
Do A D = B N = 1 2 B C = 2 a .
Xét Δ S A D có 1 A H 2 = 1 S A 2 + 1 A D 2 = 1 75 a 2 + 1 4 a 2 = 79 300 a 2
⇒ d A B , S M = A H = 10 237 a 79 = 10 3 a 79
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Đáp án D
Gọi N là trung điểm của BC
Ta có A B / / M N ⇒ d A B ; S M = d A ; S M N
S A = A C tan 60 ° = 5 a 3
S M = 5 a 3 2 + 5 a 2 2 = 5 a 13 2
S N 2 = S B 2 + B N 2 = S A 2 + A B 2 + B C 2 2 = 5 a 3 2 + 3 a 2 + 2 a 2 = 88 a 2
⇒ S N = 2 a 22
M N = A B 2 = 3 a 2
Ta có:
S M 2 = N S 2 + N M 2 − 2 N S . N M . c o s M N S ^ ⇔ 5 a 13 2 22 = 88 a 2 + 3 a 2 2 − 2.2 a . 22 . 3 a 2 c o s M N S ^
c o s M N S ^ = 3 2 22 ⇒ sin M N S ^ = 79 88
S S M N = 1 2 N M . N S . s i n M N S ⏜ = 1 2 . 3 a 2 .2 a 22 . 79 88 = 3 a 2 79 4
S A M N = 1 4 S A B C = 1 4 . 1 2 .3 a .4 a = 3 a 2 2 ; V S . A M N = 1 3 S A . S A M N = 1 3 .5 a 3 . 3 a 2 2 = 5 a 3 3 2
d A ; S M N = 3 V S . A M N S S M N = 3. 5 a 3 3 2 3 a 2 79 4 = 10 a 3 79
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
Đáp án B
Gọi N là trung điểm của BC.
d A B , S M = d A , S M N
Dưng đường cao AK trong tam giác AMN, dựng đường cao AH trong tam giác SAK.
Dễ dàng chứng minh được A H ⊥ S M N tại H, suy ra d A B , S M = d A , S M N = A H
A K = B N = 2 a , S A = 5 a 3 ⇒ A H = 10 a 3 79