K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Đáp án A

Gọi N là trung điểm AD suy ra HN // BD.

Góc giữa BD và    (SAD) bằng góc giữa HN và (SAD).

Ta có ADSH, ADAB suy ra AD (SAB) .  Trong mặt phẳng (SAB) kẻ HKSA nên ta suy ra ADHK và HK   (SAD) . vậy góc giữa HN và (SAD) là góc HNK.

Gọi cạnh của hình vuông là a

Ta tính được HN =  a 2 2 . Xét tam giác vuông SHA vuông tại H ta có 

Xét tam giác vuông HNK vuông tại K ta có 

25 tháng 6 2017

NV
2 tháng 4 2023

a.

Do tam giác SAB đều \(\Rightarrow SB=AB=a\)

Trong tam giác SBC ta có: 

\(SB^2+BC^2=2a^2=SC^2\)

\(\Rightarrow\Delta SBC\) vuông tại B (pitago đảo)

\(\Rightarrow BC\perp SB\)

Mà \(BC\perp AB\left(gt\right)\)

\(\Rightarrow BC\perp\left(SAB\right)\)

Do \(SH\in\left(SAB\right)\Rightarrow BC\perp SH\) (1)

Lại có SAB là tam giác đều, mà SH là đường trung tuyến (H là trung điểm AB)

\(\Rightarrow SH\) đồng thời là đường cao hay \(SH\perp AB\) (2)

(1);(2) \(\Rightarrow SH\perp\left(ABCD\right)\)

b.

\(SH\perp\left(ABCD\right)\Rightarrow\) HM là hình chiếu vuông góc của SM lên (ABCD)

\(\Rightarrow\widehat{SMH}\) là góc giữa SM và (ABCD) hay \(\alpha=\widehat{SMH}\)

\(SH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

\(HM=BC=a\) \(\Rightarrow tan\alpha=\dfrac{SH}{HM}=\dfrac{\sqrt{3}}{2}\)

c.

Do H là trung điểm AB, K là trung điểm AD \(\Rightarrow\) HK là đường trung bình tam giác ABD

\(\Rightarrow HK||BD\)

Mà \(BD\perp AC\) (hai đường chéo hình vuông)

\(\Rightarrow HK\perp AC\) (3)

Lại có \(SH\perp\left(ABCD\right)\Rightarrow SH\perp AC\) (4)

(3);(4) \(\Rightarrow AC\perp\left(SHK\right)\Rightarrow AC\perp SK\)

NV
2 tháng 4 2023

loading...

12 tháng 1 2017

16 tháng 3 2018

NV
21 tháng 4 2023

a.

\(\left\{{}\begin{matrix}SH\perp\left(ABCD\right)\Rightarrow SH\perp AD\\AB\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\)

Mà \(AD\in\left(SAD\right)\Rightarrow\left(SAD\right)\perp\left(SAB\right)\)

b.

M là điểm nào nhỉ?

c.

\(\left\{{}\begin{matrix}SH\perp\left(ABCD\right)\Rightarrow SH\perp CD\\HK\perp CD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SHK\right)\)

Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)

\(\Rightarrow\widehat{SKH}\) là góc giữa (SCD) và (ABCD)

\(HK=AD=a\Rightarrow tan\widehat{SKH}=\dfrac{SH}{HK}=\dfrac{\sqrt{3}}{3}\Rightarrow\widehat{SKH}=30^0\)

d.

Từ H kẻ \(HE\perp SK\) (E thuộc SK)

\(CD\perp\left(SHK\right)\) theo cmt \(\Rightarrow CD\perp HE\)

\(\Rightarrow HE\perp\left(SCD\right)\Rightarrow HE=d\left(H;\left(SCD\right)\right)\)

Hệ thức lượng:

\(\dfrac{1}{HE^2}=\dfrac{1}{SH^2}+\dfrac{1}{HK^2}\Rightarrow HE=\dfrac{a}{2}\)

NV
21 tháng 4 2023

loading...

23 tháng 3 2019

21 tháng 7 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11