Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Bán kính đường tròn ngoại tiếp hình chữ nhật ABCD là R A B C D = A C 2 = a
Vậy bán kính mặt cầu ngoại tiếp khối chóp S.ABCD là
Đáp án A
Kẻ M N ∥ B C N ∈ C D , N P ∥ S C P D , M Q ∥ S B Q ∈ S A
⇒ m p a cắt khối chóp S.ABCD theo thiết diện là MNPQ
Ta có M A A B = A Q S A = N D C D = x ⇒ S Q S A = S P S D = 1 − x (Định lý Thalet)
Mà Δ A M N = Δ A D N ⇒ V Q . A M N = V P . A D N = x V S . A M N = x 2 V S . A M N D = x 2 2 V
Và S N . A P Q = 1 3 d N ; S A D . S Δ A P Q = x 1 − x × V N . S A D = x 2 1 − x 2 V
Do đó V A Q M . D P N = V Q . A M N + V P . A N D + V N . A P Q = 3 x 2 − x 3 2 × V = 4 27 V
. ⇒ x 3 − 3 x 2 + 8 27 = 0 ⇒ x = 1 3 Vậy P = 1 − x 1 + x x = 1 3 = 1 2
Đáp án A
Ta có:
S A ⊥ A B C D B C ⊥ A B ⇒ B C ⊥ S A B ⇒ S B C ; A B C D ^ = S B A ^ R A B C D = A C 2 a .
Tam giác SAB vuông tại A, có
tan S B A ^ = S A A B ⇒ S A = tan 60 ∘ . a 3 = 3 a .
Bán kính đường tròn ngoại tiếp hình chữ nhật ABCD là
Vậy bán kính mặt cầu ngoại tiếp khối chóp S.ABCD là:
R = R A B C D 2 + S A 2 4 = a 2 + 3 a 2 4 = a 13 2 ⇒ V = 4 3 π R 3 = 13 13 π a 3 6
Chọn đáp án C
Lại có MDCN là hình thang vuông tại M và D.
Bằng định lí Talet và Pitago ta tính được