K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2018

a) Ta có AB // CD (gt)

Suy ra AM // CP    (1)

Lại có AM = AB/2; CP = CD/2    (2)

Từ (1) và (2) suy ra AMCP là hình bình hành

Suy ra AP // CM hay ES // FR.

Tương tự ta cũng chứng minh được tứ giác BQDN là hình bình hành nên BQ // DN. Suy ra EF // RS.

Vậy tứ giác EFRS là hình bình hành

b) Đặt PS = x. Suy ra CR = 2x (tính chất đường trung bình)

Từ đó suy ra RF = ES = AE = 2x

Suy ra: ES = 2AP/5 => SEFRS = 2SAMCP/5

Vì SAMCP = SABCD/2 nên SEFRS = SABCD/2

26 tháng 12 2020
Giúp mình đi mọi người
4 tháng 1 2018

Bạn xem lời giải ở đây nhé:

Câu hỏi của Quốc Lê Minh - Toán lớp 8 - Học toán với OnlineMath

https://olm.vn/hoi-dap/detail/96788252350.html

Tham khảo ở link này (mình gửi cho)

Hoc tốt!!!!!!!!!!!!

27 tháng 6 2016

Tự vẽ hình nhé, cô sẽ hướng dẫn :)

b. Xét tứ giác DQBN có DQ song song và bằng BN nên đó là hình bình hành. Vậy QB//DN.

Từ đó  suy ra được GHKI là hình bình hành hay KH = GI. 

Lại có QG và KN là các đường trung bình nên AG = GI = HK = KC.

Tương tự MH cũng là đường trung bình nên AG = 2 MH. Vậy HK = KC =2 MH hay MC = 5 MH.

c. Lập tỉ số diện tích bằng cách dựa vào các tỉ số giữa cạnh đáy là chiều cao của các hình.

Ta có \(\frac{S_{CKN}}{S_{CMB}}=\frac{2}{5}.\frac{1}{2}=\frac{1}{5}\)

Mà \(\frac{S_{CMB}}{S_{ABCD}}=\frac{1}{2}.\frac{1}{2}=\frac{1}{4}\) , vì vậy \(\frac{S_{KCN}}{S_{ABCD}}=\frac{1}{5}.\frac{1}{4}=\frac{1}{20}\)

28 tháng 6 2016

c. Ta thấy \(\frac{S_{KCN}}{S_{MBC}}=\frac{KC}{MC}.\frac{d\left(B,MC\right)}{d\left(N,MC\right)}=\frac{2}{5}.\frac{1}{2}=\frac{1}{5}\)

Với d(B,MC) là độ dài chiều cao kẻ từ B xuống MC.

4 tháng 1 2018

A B C D M N P 1 2 K H 2 H 1

a)  Ta có DM song song và bằng BN nên BMDN là hình bình hành (vì có 2 cạnh đối song song và bằng nhau)

b) Tam giác CDN bằng tam giác DAP (cạnh - góc - cạnh)

=> Góc D1 = góc A1

Ta lại có Góc D2 + Góc D1 = Góc D = 90 độ

=> Góc D2 + Góc A1 = 90 đo

Trong tam giác KAD có tổng 2 góc A và D bằng 90 độ nên góc K bằng 90 độ 

=> AP vuông góc với DN

c) Tương tự câu b ta có BM vuông góc với AP

=> BM // DN (vì cùng vuông góc vời AP)

=> BMKN là hình thang.

Theo câu b tam giác KAD vuông tại K có KM là trung tuyến ứng với cạnh huyền => KM = 1/2 AD

=> KM = BN

=> BMKN là hình thang cân

d) \(DP=\frac{1}{2}\sqrt{5},AP=\sqrt{5-\frac{1}{4}5}=\frac{\sqrt{15}}{2}\)

  \(DP^2=PK.PA\)

=> \(PK=\frac{DP^2}{PA}=\frac{\frac{5}{4}}{\frac{\sqrt{15}}{2}}=\frac{\sqrt{15}}{6}\)

=> \(\frac{PK}{PA}=\frac{\frac{\sqrt{15}}{6}}{\frac{\sqrt{15}}{2}}=\frac{1}{3}\)

=> Đường cao hạ từ K xuống DC bằng 1/3 đường cao hạ từ A xuống DC

=> Đường cao hạ từ K xuống DC = \(\frac{1}{3}\sqrt{5}\)

=> Đường cao hạ từ K xuống MN bằng \(\frac{1}{2}\sqrt{5}-\frac{1}{3}\sqrt{5}=\frac{\sqrt{5}}{6}\)

=> Diện tích KMN bằng \(\frac{1}{2}.MN.KH_2=\frac{1}{2}\sqrt{5}\frac{\sqrt{5}}{6}=\frac{5}{12}\)

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: ta có: DEBF là hình bình hành

nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)

Ta có:ABCD là hình bình hành

nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra BD,EF,AC đồng quy