K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Trong đường tròn nhỏ:

AB > CD => OH < OK (định lí 3)

b) Trong đường tròn lớn:

OH < OK => ME > MF (định lí 3)

c) Trong đường tròn lớn:

ME > MF => MH > MK

30 tháng 4 2021

a) Xét trong đường tròn nhỏ:

Theo định lí 22: trong hai dây của một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn.

Theo giả thiết AB>CDAB>CD suy ra ABAB gần tâm hơn, tức là  OH<OKOH<OK.

b) Xét trong đường tròn lớn:

Theo định lí 22: trong hai dây của một đường tròn, dây nào gần tâm hơn thì dây đó lớn hơn.

Theo câu aa, ta có: OH<OKME>MFOH<OK⇒ME>MF.

c) Xét trong đường tròn lớn:

Vì OHMEEH=MH=ME2OH⊥ME⇒EH=MH=ME2 (Định lý 2 - trang 103).

Vì OKMFKF=MK=MF2OK⊥MF⇒KF=MK=MF2 (Định lý 2 - trang 103). 

Theo câu bb, ta có: ME>MFME2>MF2MH>MK

25 tháng 4 2017

a) Xét đường tròn nhỏ ta được OH<OKOH<OK.

b) Xét đường tròn lớn ta được ME>MFME>MF.

c) Từ kết quả câu b) suy ra MH>MKMH>MK.

28 tháng 11 2019

a) Trong đường tròn nhỏ:

AB > CD => OH < OK (định lí 3)

b) Trong đường tròn lớn:

OH < OK => ME > MF (định lí 3)

c) Trong đường tròn lớn:

ME > MF => MH > MK

8 tháng 11 2018

Trong đường tròn lớn:

OH < OK => ME > MF (định lí 3)

Tham khảo:

undefined

 

12 tháng 1 2018

Cái này bạn chụp sách giải đúng ko ???

Sao cái này y chang như sách giải vậy ???

24 tháng 6 2017

Ta có \(\widehat{A}>\widehat{B}>\widehat{C}\) nên \(BC>AC>AB\)

Do đó \(OH< OI< OK\)

Tham khảo: