Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT (2) $\Leftrightarrow x+y+xy+1=0$
$\Leftrightarrow (x+1)(y+1)=0$
$\Rightarrow x+1=0$ hoặc y+1=0$
Nếu $x+1=0$ suy ra $x=-1$. Thay vào PT $(1)$ suy ra $y^2=2\Rightarrow y=\pm \sqrt{2}$
Nếu $y+1=0\Rightarrow y=-1$. Thay vào PT $(1)$ suy ra $x^2=2\Rightarrow x=\pm \sqrt{2}$
Vậy $(x,y)=(-1; \pm \sqrt{2}); (\pm \sqrt{2}; -1)$
Từ đây ta suy ra:
A đúng.
B đúng
C sai
D đúng
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
ĐK: \(x+y\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)
\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)
\(\Leftrightarrow a^3-ab-a+b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được
\(x^2-y=1\Leftrightarrow y=x^2-1\)
\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)
Giải (4)
Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)
do đó (4) không xảy ra
Vậy..........
hiện nay mẹ hơn con 24 tuổi và tuổi con bằng 1 /3 tuổi mẹ cách đây 3 năm tuổi con là bao nhiêu
Đáp án: D
Vậy hệ phương trình có 2 nghiệm