K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2015

a) \(det=\left|\begin{matrix}1&-m\\m&1\end{matrix}\right|=1+m^2\ne0\) với mọi m => Hệ phương trình bậc nhất hai ẩn luôn có nghiệm

b) Ta có:

x0 - my0 = 2 - 4m         

mx0 + y0 = 3m + 1       

Hay là:

    x0 - 2 =  m (y0 - 4)         

    y0 - 1 = m (3 - x0)       

=> Chia hai vế cho nhau ta được

\(\frac{x_0-2}{y_0-1}=\frac{y_0-4}{3-x_0}\)

=> (x0 - 2)(3 - x0) = (y0 - 4)(y0 - 1)

=> -x02 + 5x0 - 6 = y02 - 5y0 + 4

=> x02 + y02 - 5(x0 + y0) = -10

ĐPCM

 

15 tháng 10 2019

Chọn D

29 tháng 9 2019

Chọn D

Mong mọi người giúp mk nha

2 tháng 9 2021

Cho phương trình 2x^4 - (m - 1)x^2+m-3=0Tìm điều kiện của m để phương trình có 4 nghiệm phân biệt - H

anh vào link này nếu không vào được thì liên hệ em 

@mlem

14 tháng 10 2019

\(\hept{\begin{cases}mx+y=m^2+m+1\\-x+my=m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(my-m^2\right)+y-m^2-m-1=0\\x=my-m^2\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(m^2y-m^2\right)+\left(y-1\right)-\left(m^3+m\right)=0\\x=my-m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m^2+1\right)\left(y-m-1\right)=0\\x=my-m^2\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}y=m+1\\x=m\left(m+1\right)-m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m\\y=m+1\end{cases}}\)

\(\Rightarrow\)\(x^2+y^2=2m^2+2m+1=2\left(m+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra khi \(m=\frac{-1}{2}\) hay hệ có nghiệm \(\left(x;y\right)=\left(\frac{-1}{2};\frac{1}{2}\right)\)