Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phương trình 2x^4 - (m - 1)x^2+m-3=0Tìm điều kiện của m để phương trình có 4 nghiệm phân biệt - H
anh vào link này nếu không vào được thì liên hệ em
@mlem
Bài 1:
Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x-2y=-1\\ 2x+y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4y=-2\\ 2x+y=2\end{matrix}\right.\)
\(\Rightarrow (2x+y)-(2x-4y)=2-(-2)\)
\(\Leftrightarrow 5y=4\Rightarrow y=\frac{4}{5}\)
\(x=\frac{2-y}{2}=\frac{2-\frac{4}{5}}{2}=\frac{3}{5}\)
Vậy ...........
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} mx-2y=m-2\\ y=m+1-2x\end{matrix}\right.\Rightarrow mx-2(m+1-2x)=m-2\)
\(\Leftrightarrow x(m+4)=3m(*)\)
Để HPT ban đầu có bộ nghiệm (x,y) duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $m+4\neq 0$ hay $m\neq -4$
Bài 2:
a)
Khi $m=2$ thì hệ trở thành:
\(\left\{\begin{matrix}
x+2y=1\\
2x+y=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
2x+4y=2\\
2x+y=1\end{matrix}\right.\)
\(\Rightarrow (2x+4y)-(2x+y)=2-1\)
\(\Leftrightarrow 3y=1\Rightarrow y=\frac{1}{3}\)
Khi đó: \(x=1-2y=1-2.\frac{1}{3}=\frac{1}{3}\)
Vậy HPT có bộ nghiệm duy nhất $(x,y)=(\frac{1}{3}, \frac{1}{3})$
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} x=1-my\\ mx+y=1\end{matrix}\right.\Rightarrow m(1-my)+y=1\)
\(\Leftrightarrow y(1-m^2)=1-m(*)\)
Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất. Điều này xảy ra khi \(1-m^2\neq 0\Leftrightarrow m\neq \pm 1\)
Khi đó:
\(y=\frac{1-m}{1-m^2}=\frac{1}{1+m}\)
\(x=1-my=1-\frac{m}{m+1}=\frac{1}{m+1}\)
Vậy HPT có nghiệm \((x,y)=(\frac{1}{m+1}, \frac{1}{m+1})\)
Để \(x,y>0\Leftrightarrow \frac{1}{m+1}>0\Leftrightarrow m>-1\)
Kết hợp những điều vừa tìm được suy ra $m>-1$ và $m\neq 1$ thì thỏa mãn.
\(\hept{\begin{cases}mx+y=m^2+m+1\\-x+my=m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(my-m^2\right)+y-m^2-m-1=0\\x=my-m^2\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(m^2y-m^2\right)+\left(y-1\right)-\left(m^3+m\right)=0\\x=my-m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m^2+1\right)\left(y-m-1\right)=0\\x=my-m^2\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}y=m+1\\x=m\left(m+1\right)-m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m\\y=m+1\end{cases}}\)
\(\Rightarrow\)\(x^2+y^2=2m^2+2m+1=2\left(m+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(m=\frac{-1}{2}\) hay hệ có nghiệm \(\left(x;y\right)=\left(\frac{-1}{2};\frac{1}{2}\right)\)
Ta có: D = m 1 1 m = m 2 - 1
Hệ phương trình có nghiệm duy nhất ⇔ D ≠ 0 ⇔ m 2 - 1 ≠ 0 ⇔ m ≠ ± 1
Đáp án cần chọn là: C