Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm
=> ^SAO = 900 hay tam giác SAO vuông tại A
Theo định lí Pytago tam giác SAO ta có :
\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm
b, Xét tam giác SAO vuông tại A, AH là đường cao
Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm
Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm
c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau )
AO = BO = R
Vậy SO là đường trung trực đoạn AB
mà AH vuông SO => HB vuông SO
=> A;H;B thẳng hàng
pt đã cho<=> 4x2 + 12y2 + 12xy - 32x - 64y + 92 =0
<=> (4x2 + 9y2 +12xy - 32x -48y +64) + ( 3y2 -16y +28) =0
<=> (2x+3y-8)2 + (3y2 -16y +28) =0
<=> 3(2x+3y-8)2 + (9y2 -48y +84) =0
<=> 3(2x+3y-8)2 +(3y-8)2 + 20=0 (pt vô nghiệm)
Bài 1 :
Câu a : \(\sqrt{36}< \sqrt{37}\Leftrightarrow6< \sqrt{37}\)
Câu b : \(\sqrt{17}>\sqrt{16}\Leftrightarrow\sqrt{17}>4\)
Câu c : \(0,7< 0,8\Leftrightarrow\sqrt{0,7}< 0,8\)
Bài 2 :
Câu a : \(3< \sqrt{10}< 4\Leftrightarrow\sqrt{9}< \sqrt{10}< \sqrt{16}\) Đúng
Câu b : \(1,1< \sqrt{1,56}< 1,2\Leftrightarrow1,21< 1,56< 1,44\) Sai
1. So sánh
a)\(6< \sqrt{37}\)
b) \(\sqrt{17}>4\)
c)\(\sqrt{0,7}>0,8\)
a: Thay x=2 và y=-2 vào (d), ta được:
2m+m+2=-2
=>3m=-4
=>m=-4/3
b: Thay x=0 và y=4 vào (d), ta được:
m+2=4
=>m=2
c: Thay x=3 và y=0 vào(d), ta được:
3m+m+2=0
=>4m=-2
=>m=-1/2
1: Để hàm số đồng biến thì m-3>0
hay m>3
2: Thay x=0 và y=0 vào (d), ta được:
3m+7=0
hay \(m=-\dfrac{7}{3}\)
. Chị ơi, chị có thể làm tiếp giúp em câu 3,4,5 đc ko ah?:)