Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+TXĐ: X\(\in\)R
+y'=\(3x^2-6x\Rightarrow y'=0\Leftrightarrow\int_{x=2;y=0}^{x=0;y=4}\)
+y''=6(x-1)=> y' = 0 khi x = 1;y=2
+
x | -\(\infty\) 0 1 2 +\(\infty\) |
y' | + 0 - - 0 + |
y |
Đáp án C
Phương pháp : Xét từng mệnh đề.
Cách giải:
(I) sai. Ví dụ hàm số có đồ thị hàm số như sau:
õ ràng
(II) đúng vì y ' = 4 a x 3 + 2 b x = 0 luôn có một nghiệm x = 0 nên đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III) Gọi x 0 là 1 điểm cực trị của hàm số => Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x 0 là: luôn song song với trục hoành.
Vậy (III) đúng.
Đáp án C
Khi m > -3 thì phương trình f(x) = m có hai nghiệm lớn hơn 1. Do đó chọn phương án C.
Đáp án C
y = 1 − m x 4 − m x 2 + 2 m − 1 y ' = 4 1 − m x 3 − 2 m x = 2 x 2 1 − m x 2 − m
TH1: ta có m= 1 đồ thị hàm số y'=2x có đúng một cực trị.
TH2: m ≠ 1 Để đồ thị hàm số có đúng một cực trị <=> phương trình 2 1 − m x 2 m = 0 hoặc vô nghiệm hoặc có nghiệp kép x= 0
⇔ Δ ' < 0 m = 0 ⇔ 2 m 1 − m < 0 m = 0 ⇔ m ∈ − ∞ ; 0 ∪ 1 ; + ∞ m = 0
Kết hợp điều kiện ta được m ≤ 0 hoặc m ≥ 1