K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Chọn B

PT hoành đồ giao điểm của (C) và trục hoành:

x3 + 3x2 + mx + m - 2 = 0     (1) 

yWtxJBpq1Kcd.png

(Cm)  có 2 điểm cực trị nằm về hai phía đối với trục Ox 

kRBuOBs9dYd7.pngPT (1) có 3 nghiệm phân biệt 

 SfxSlle3omRh.png(2) có 2 nghiêm phân biệt khác -1 

czo4P7APJTd9.png 

29 tháng 11 2017

Đạo hàm  y’ = 3x2+6x+m. Ta có  ∆ ' y ' = 9 - 3 m

Hàm số có cực đại và cực tiểu khi  ∆ ' y ' = 9 - 3 m > 0 ⇔ m < 3  

Ta có 

Gọi x1; x2 là hoành độ của hai điểm cực trị khi đó 

Theo định lí Viet, ta có 

Hai điểm cực trị nằm về hai phía trục hoành khi y1.y2<0

Chọn C.

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoànhBài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác...
Đọc tiếp

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành

Bài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)

Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về cùng một phía đối với trục tung

Bài 4: Cho hàm số \(y=-x^3+2(m-1)x^2-(m^2-3m+2)x-4\)

(m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung

Bài 5: Cho hàm số \(y=-x^3+3x^2+3(m^2-1)x-3m^2-1\) (1). Tìm m để hàm số (1) có cực đại, cực tiểu, đồng thời các điểm cực đại và cực tiểu cùng với gốc tọa độ O tạo thành một tam giác vuông tại O

 

5
NV
18 tháng 7 2021

1.

Đồ thị hàm bậc 3 có 2 điểm cực trị nằm về 2 phía trục hoành khi và chỉ khi \(f\left(x\right)=0\) có 3 nghiệm phân biệt

\(\Leftrightarrow x^3+3x^2+mx+m-2=0\) có 3 nghiệm pb

\(\Leftrightarrow x^3+3x^2-2+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-2\right)+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+m-2=0\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}1-2+m-2\ne0\\\Delta'=1-\left(m-2\right)>0\end{matrix}\right.\) 

\(\Leftrightarrow m< 3\)

NV
18 tháng 7 2021

2.

Pt hoành độ giao điểm:

\(\dfrac{2x-2}{x+1}=2x+m\)

\(\Rightarrow2x-2=\left(2x+m\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2+mx+m+2=0\) (1)

d cắt (C) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb

\(\Rightarrow\Delta=m^2-8\left(m+2\right)>0\Rightarrow\left[{}\begin{matrix}m>4+4\sqrt{2}\\m< 4-4\sqrt{2}\end{matrix}\right.\)

Khi đó, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{m}{2}\\x_Ax_B=\dfrac{m+2}{2}\end{matrix}\right.\)

\(y_A=2x_A+m\) ; \(y_B=2x_B+m\)

\(\Rightarrow AB^2=\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(2x_A-2x_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2=1\)

\(\Leftrightarrow\left(x_A+x_B\right)^2-4x_Ax_B=1\)

\(\Leftrightarrow\left(-\dfrac{m}{2}\right)^2-4\left(\dfrac{m+2}{2}\right)=1\)

\(\Leftrightarrow m^2-8m-20=0\Rightarrow\left[{}\begin{matrix}m=10\\m=-2\end{matrix}\right.\)

27 tháng 10 2017

12 tháng 12 2017

 

 

+ Hàm số có điểm cực đại là x = -1

Giải bài 8 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Vậy với Giải bài 8 trang 44 sgk Giải tích 12 | Để học tốt Toán 12 thì hàm số có điểm cực đại là x = -1.

8 tháng 7 2018

Chọn đáp án C.

Ta có y ' = 3 x 2 - 2 ( m + 1 ) x + m 2 - 2

trước tiên ta phải có phương trình y ' = 0  có hai nghiệm phân biệt

 

Điều kiện hai điểm cực trị của đồ thị hàm số nằm cùng về một phía đối với trục hoành là y x 1 . y x 2 > 0

⇔ y = 0  có đúng một nghiệm thực.

Thử trực tiếp các giá trị của m{−1,0,1,2} nhận các giá trị m{−1,0,2} để y = 0 có đúng một nghiệm thực.

31 tháng 3 2018

18 tháng 10 2017

 

 

⇔ m = -5/3

6 tháng 2 2017

Chọn A

[Phương pháp trắc nghiệm]

y ' = 3 x 2 - 6 x - m

Hàm số có 2 cực trị m > -3 , gọi x 1 , x 2 là hai nghiệm của phương trình y ' = 0 ,

ta có:  x 1 + x 2 = 2

Bấm máy tính

Hai điểm cực trị của đồ thị hàm số là

Gọi I là trung điểm của AB

⇒ I ( 1 ; - m )

Đường thẳng đi qua hai điểm cực trị là

Yêu cầu bài toán

Kết hợp với điều kiện thì m = 0

26 tháng 3 2016

kho nhu bay len mat troioe

26 tháng 3 2016

gợi ý :

Tìm giá trị của \(m\) để hàm số có cực đại ,cực tiểu .