K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

13 tháng 2 2016

khó

13 tháng 2 2016

thế ms hỏi

 

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

2 tháng 10 2015

vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)

ta tính y' có:

\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)

vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)

thay b=-3 vào (*) ta tìm được a=-2

vậy a=-2;b=-3

3 tháng 12 2017

Chọn đáp án C

Do đó phương trình đường thẳng đi qua 3 điểm A’, B’, C’

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

19 tháng 4 2016

Phương trình tiếp tuyến tại M0 có dạng: y = k(x – x0) + y0  (*)

Với x0 là hoành độ tiếp điểm;

Với y0 = f(x0) là tung độ tiếp điểm;

Với k = y’(x0) = f’(x0) là hệ số góc của tiếp tuyến.

Để viết được phương trình tiếp tuyến ta phải xác định được x0; y0 và k

1 tháng 10 2015

đây là dạng bài viết phương trình tiếp tuyến đi qua 1 điểm

cách làm tương tự như trên

ta tính \(y'=4x^3-4x=4x\left(x^2-1\right)\)

gọi \(A\left(a,b\right)\) là tọa độ tiếp điểm ta có \(y'\left(a\right)=4a^3-4a=4a\left(a^2-1\right)\)

phương trình tiếp tuyến tại A là \(y=4a\left(a^2-1\right)\left(x-a\right)+b\)(*)

vì tiếp tuyến qua điểm \(A\left(0;2\right)\)

suy ra \(a,b\) là nghiệm của hệ pt

\(\begin{cases}b=a^4-2a^2+2\\2=4a\left(a^2-1\right)\left(0-a\right)+b\end{cases}\)

gải hệ pt ta đc \(a=0;a=\pm\sqrt{\frac{2}{3}}\)

thay \(a,b\) vào pt (*) trên ta đc 3 tiếp tiếp cần tim