K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2015

vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)

ta tính y' có:

\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)

vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)

thay b=-3 vào (*) ta tìm được a=-2

vậy a=-2;b=-3

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

2 tháng 11 2015

dễ

5 tháng 11 2015

chỉ tui với

18 tháng 7 2017

a) vẽ dễ lắm ; tự vẽ nha

b) xét phương trình hoành độ của 2 đồ thị đó

ta có : \(x^2=-2x+3\Leftrightarrow x^2+2x-3=0\)

ta có : \(a+b+c=1+2-3=0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=1\) \(\Rightarrow y=x^2=1^2=1\) vậy \(A\left(1;1\right)\)

\(x_2=\dfrac{c}{a}=-3\) \(\Rightarrow y=x^2=\left(-3\right)^2=9\) vậy \(B\left(-3;9\right)\)

vậy 2 đồ thị cắt nhau tại 2 điểm phân biệt là \(A\left(1;1\right)\)\(B\left(-3;9\right)\)

13 tháng 2 2016

khó

13 tháng 2 2016

thế ms hỏi

 

b: Thay x=2 vào (P), ta được:

\(y=-\dfrac{1}{4}\cdot2^2=-1\)

Vì (d) đi qua O(0;0) và A(2;-1) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot0+b=0\\2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=0\end{matrix}\right.\)

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

9 tháng 7 2018

Đáp án A.

Đồ thị nhận x = 2  là tiệm cận đứng ⇒ 2 + b = 0 ⇔ b = − 2.

Đồ thị đi qua  4 ; 2 ⇔ 2 = a 4 − 4 4 + b ⇒ 2 = 4 a − 4 4 − 2 ⇒ a = 2.   ⇒ a + b = 0.