K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2018

Đáp án C

21 tháng 10 2016

dùng máy tính bỏ túi fx-570es plus là ra ngay

 

a: \(y=-x^2+2x+3\)

y>0

=>\(-x^2+2x+3>0\)

=>\(x^2-2x-3< 0\)

=>(x-3)(x+1)<0

TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 3\\x>-1\end{matrix}\right.\)

=>-1<x<3

\(y=\dfrac{1}{2}x^2+x+4\)

y>0

=>\(\dfrac{1}{2}x^2+x+4>0\)

\(\Leftrightarrow x^2+2x+8>0\)

=>\(x^2+2x+1+7>0\)

=>\(\left(x+1\right)^2+7>0\)(luôn đúng)

b: \(y=-x^2+2x+3< 0\)

=>\(x^2-2x-3>0\)

=>(x-3)(x+1)>0

TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>3\\x>-1\end{matrix}\right.\)

=>x>3

TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 3\\x< -1\end{matrix}\right.\)

=>x<-1

\(y=\dfrac{1}{2}x^2+x+4\)

\(y< 0\)

=>\(\dfrac{1}{2}x^2+x+4< 0\)

=>\(x^2+2x+8< 0\)

=>(x+1)2+7<0(vô lý)

30 tháng 10 2016

1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.

Áp dụng BĐT BCS , ta có

\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)

\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)

Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5

30 tháng 10 2016

2/ Áp dụng bđt AM-GM dạng mẫu số ta được

\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)

\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)

Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)

Vậy ......................................

DD
7 tháng 7 2021

\(f\left(x\right)=3x+\frac{2}{\left(2x+1\right)^2}=\frac{3}{4}\left(2x+1\right)+\frac{3}{4}\left(2x+1\right)+\frac{2}{\left(2x+1\right)^2}-\frac{3}{2}\)

\(\ge3\sqrt[3]{\left[\frac{3}{4}\left(2x+1\right)\right]^2.\frac{2}{\left(2x+1\right)^2}}-\frac{3}{2}=\frac{3}{2}\sqrt[3]{9}-\frac{3}{2}\)

Dấu \(=\)khi \(\frac{3}{4}\left(2x+1\right)=\frac{2}{\left(2x+1\right)^2}\Leftrightarrow\left(2x+1\right)^3=\frac{8}{3}\Leftrightarrow x=\frac{1}{\sqrt[3]{3}}-\frac{1}{2}\).

11 tháng 1 2021

y = (x² - 1)(x + 3)(x + 5)

= [(x - 1)(x + 5)].[(x + 1)(x + 3)]

= (x² + 4x - 5)(x² + 4x + 3)

= [x² + 4x - 1) - 4].[(x² + 4x - 1) + 4]

= (x² + 4x - 1)² - 16 ≥ - 16

- Khi x = 0 ⇒ y = - 15

- Khi x = 1 ⇒ y = 0

- Khi x² + 4x - 1 = 0 ⇔ x = √5 - 2 ( loại giá trị x = - √5 - 2 < 0) ⇒ y = - 16

Vậy trên đoạn [0; 1] thì :

GTNN của y = - 16 khi x = √5 - 2

GTLN của y = 0 khi x = 1