K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

f(0) = 1/2.0 + 5 = 5

f(2) = 1/2.2 + 5 = 6

f(3) = 1/2.3 + 5 = 13/2

f(-2) = 1/2.(-2) + 5 = 4

f(-10) = 1/2.(-10) + 5 = 0

24 tháng 7 2017

Giải:

\(y=f\left(x\right)=\dfrac{1}{2}x+5\)

\(\Leftrightarrow f\left(0\right)=\dfrac{1}{2}.0+5=0+5=5\)

\(\Leftrightarrow f\left(1\right)=\dfrac{1}{2}.1+5=\dfrac{1}{2}+5=\dfrac{11}{2}\)

\(\Leftrightarrow f\left(2\right)=\dfrac{1}{2}.2+5=1+5=6\)

\(\Leftrightarrow f\left(3\right)=\dfrac{1}{2}.3+5=\dfrac{3}{2}+5=\dfrac{13}{2}\)

\(\Leftrightarrow f\left(-2\right)=\dfrac{1}{2}.\left(-2\right)+5=-1+5=4\)

\(\Leftrightarrow f\left(-10\right)=\dfrac{1}{2}.\left(-10\right)+5=-5+5=0\)

Vậy ...

Chúc bạn học tốt!

25 tháng 7 2018

\(y=f\left(x\right)=\dfrac{1}{2}x+5\)

Ta có : \(f\left(0\right)=\dfrac{1}{2}.0+5=5\)

\(f\left(1\right)=\dfrac{1}{2}.1+5=\dfrac{11}{2}=5,5\)

\(f\left(2\right)=\dfrac{1}{2}.2+5=6\)

\(f\left(3\right)=\dfrac{1}{2}.3+5=\dfrac{13}{2}=6,5\)

\(f\left(-2\right)=\dfrac{1}{2}.\left(-2\right)+5=4\)

\(f\left(-10\right)=\dfrac{1}{2}.\left(-10\right)+5=0\)

#HỌC TỐT ~~~

31 tháng 10 2019

f(0) = 1/2.0 + 5 = 5

f(2) = 1/2.2 + 5 = 6

f(3) = 1/2.3 + 5 = 13/2

f(-2) = 1/2.(-2) + 5 = 4

f(-10) = 1/2.(-10) + 5 = 0

4 tháng 4 2015

Ta có f(x) = 2015/[x(x + 2)]

=> f(1) = 2015/(1.3) = (2015/2)(1/1 - 1/2)

     f(2) = 2015/(2.4) = (2015/2)(1/2 - 1/4)

     f(3) = 2015/(3.5) = (2015/2)(1/3 - 1/5)

.........................................

=> S = f(1)+f(2)+f(3)+...+f(2015)

        = (2015/2)(1 + 1/2 - 1/2016 - 1/2017)

a: f(1)=-1,5

f(2)=-6

f(3)=-13,5

=>f(1)>f(2)>f(3)

b: \(f\left(-3\right)=-1,5\cdot9=-13,5\)

f(-2)=-1,5x4=-6

f(-1)=-1,5x1=-1,5

=>f(-3)<f(-2)<f(-1)

c: Hàm số này đồng biến khi x<0 và nghịch biến khi x>0

19 tháng 10 2020

a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)

và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))

* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)

* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)

c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:

+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)

+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)

+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)

Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên 

d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)\(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)

f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)

Vậy x = 0 thì f(x) = f(2x)