K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

Đáp án D

Phương pháp:

Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m

Cách giải:

Từ đồ thị hàm số y = f(x) ta có đồ thị hàm số y = |f(x)| như hình bên:

 

Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m

⇒ Để phương trình |f(x)| = m có 4 nghiệm phân biệt thì 1 < m < 3

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

10 tháng 4 2017

Chọn B

11 tháng 9 2019

Chọn đáp án D.

Do đó để phương trình f sin x = m có nghiệm trong khoảng (0;p)

thì phương trình f t = m  có nghiệm  t ∈ ( 0 ; 1 ]

3 tháng 5 2019

TH1: Với x- 1≥0 hay x≥  1

khi đó  f(x) |x - 1| = m <=> m = f(x).(x - 1)     (1)

Dựa vào đồ thị ( C) trên khoảng [1; +] để (1) có 2 nghiệm  khi và chỉ khi -0,6< m≤0

TH2: Với x< 1 khi đó  f(x)|x-1| = m <=> -m = f(x).(x-1)    (2)

Dựa vào đồ thị (C) trên khoảng ( - ∞ ; - 1 )   để (1) có 3 nghiệm

Khi và chỉ khi 0≤ -m <0,7 hay – 0,7< m ≤0

Kết hợp 2 TH, ta thấy -0,6<m< 0  thì phương trình có tối đa 5 nghiệm ( m= 0 loại vì phương trình có 4 nghiệm).

Chọn B.

25 tháng 11 2017

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

6 tháng 3 2019

Chọn B

5 tháng 8 2018

+ Trước tiên từ đồ thị hàm số y= f( x) , ta suy ra đồ thị hàm số y = |f(x)| như hình dưới đây: 

Phương trình 2|f(x)| - m = 0 hay  |f(x)| =  m/2 là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x) và đường thẳng y= m/2.

Dựa vào đồ thị hàm số  y = |f(x)|, ta có ycbt trở thành:

Chọn A.

2 tháng 11 2017

Đáp án C