K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

a) Vẽ đồ thị hàm số:

- Cho x = 0 thì y = 3 ta được A(0; 3)

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Gọi góc hợp bởi đường thẳng y = -2x + 3 và trục Ox là α.

Để học tốt Toán 9 | Giải bài tập Toán 9

23 tháng 4 2017

a) Đồ thị được vẽ như hình bên.

b) Gọi α là góc giữa đường thẳng y = -2x + 3 và trục Ox.

Thế thì = 1800 - α.

Ta có tg = = = 2.
Suy ra ≈ 63026’

Vậy α ≈ 116034’.

23 tháng 4 2017

Bài giải:

a) Đồ thị được vẽ như hình bên.

b) Gọi α là góc giữa đường thẳng y = -2x + 3 và trục Ox.

Thế thì = 1800 - α.

Ta có tg = = = 2.
Suy ra ≈ 63026’

Vậy α ≈ 116034


23 tháng 4 2017

a) * Vẽ đồ thị hàm số y = 0,5x + 2 (1)

Cho x = 0, tính được y = 2 => D(0; 2) thuộc đồ thị.

Cho y = 0, 0 = 0,5.x + 2 => x = -4 => A(-4; 0) thuộc đồ thị. Đường thẳng vẽ qua A, D là đồ thị của (1).

*Vẽ đồ thị hàm số y = 5 – 2x (2)

-Cho x = 0 tính được y = 5 E(0; 5) thuộc đồ thị

-Cho y = 0, 0 = 5 – 2x => x = 2,5 => B(2,5; 0) thuộc đồ thị. Đường thẳng vẽ qua B, E là đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

26 tháng 8 2017

Gọi góc hợp bởi đường thẳng y = -2x + 3 và trục Ox là α.

Để học tốt Toán 9 | Giải bài tập Toán 9

a: Vì (d)//y=1/2x+1 nên \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b\ne1\end{matrix}\right.\)

Vậy: (d): \(y=\dfrac{1}{2}x+b\)

Thay x=2 và y=2 vào (d), ta được:

\(b+\dfrac{1}{2}\cdot2=2\)

=>b+1=2

=>b=1

vậy: (d): \(y=\dfrac{1}{2}x+1\)

b: loading...

c: Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

Ta có: (d): \(y=\dfrac{1}{2}x+1\)

=>a=1/2

=>\(tan\alpha=a=\dfrac{1}{2}\)

=>\(\alpha\simeq26^034'\)

d: tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\\dfrac{1}{2}x+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\dfrac{1}{2}x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-2\end{matrix}\right.\)

Tọa độ C là;

\(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}x+1=\dfrac{1}{2}\cdot0+1=1\end{matrix}\right.\)

Vậy: B(-2;0); C(1;0)

\(OB=\sqrt{\left(-2-0\right)^2+\left(0-0\right)^2}=\sqrt{2^2+0^2}=2\)

\(OC=\sqrt{\left(1-0\right)^2+\left(0-0\right)^2}=\sqrt{1^2+0^2}=1\)

Vì Ox\(\perp\)Oy nên OB\(\perp\)OC

=>ΔBOC vuông tại O

=>\(S_{BOC}=\dfrac{1}{2}\cdot OB\cdot OC=\dfrac{1}{2}\cdot2\cdot1=1\)