Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(y'=\frac{\left(\frac{1-x^2}{1+x^2}\right)'}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-2x.\left(1+x^2\right)-2x.\left(1-x^2\right)}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-4x}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{-4x}{\left(1+x^2\right)\left(1-x^2\right)}=\frac{-4x}{1-x^4}\)
ta có:
\(y'=\frac{\left(x+\sqrt{x^2+1}\right)'}{x+\sqrt{x^2+1}}=\frac{1+\frac{x}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{1+\frac{x}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{\frac{x+\sqrt{x^2+1}}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{1}{\sqrt{x^2+1}}\)
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
ta có:
\(y'=e^xlnx+xe^xlnx+xe^x\frac{1}{x}=e^x\left(lnx+xlnx+1\right)\)
ta có
\(y=\frac{\left(e^x+e^{-x}\right)\left(e^x+e^{-x}\right)-\left(e^x-e^{-x}\right)\left(e^x-e^{-x}\right)}{\left(e^x+e^{-x}\right)^2}=\frac{\left(e^x+e^{-x}\right)^2-\left(e^x-e^{-x}\right)^2}{\left(e^x+e^x\right)^2}=\frac{\left(e^x+e^{-x}+e^x-e^{-x}\right)\left(e^x+e^{-x}-e^x+e^{-x}\right)}{\left(e^x+e^{-x}\right)^2}=2\frac{e^x-e^{-x}}{\left(e^x+e^{-x}\right)^2}=\frac{2}{e^x+e^{-x}}\)
Chọn A.
Phương pháp: Tính đạo hàm và thay x = e
Cách giải: Ta có: