K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Đáp án đúng : A

2 tháng 10 2015

vì đồ thị hàm số đi qua điểm \(A\left(-1;\frac{5}{2}\right)\) nên tọa độ của A thỏa mãn phương trình sau: \(\frac{a+b}{-2}=\frac{5}{2}\Rightarrow a+b=-5\)(*)

ta tính y' có:

\(y'=\frac{\left(2ax-b\right)\left(x-1\right)-\left(ax^2-bx\right)}{\left(x-1\right)^2}=\frac{2ax^2-2ax-bx+b-ax^2+bx}{\left(x-1\right)^2}=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\)

vì hệ số góc của tiếp tuyến tại điểm O(0;0) bằng 3 nên \(y'\left(O\right)=\frac{b}{\left(0-1\right)^2}=-3\Rightarrow b=-3\)

thay b=-3 vào (*) ta tìm được a=-2

vậy a=-2;b=-3

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

19 tháng 8 2018

Đáp án D

Phương pháp:

+) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x o .

+) Tìm giao điểm của tiếp tuyến với các trục tọa độ.

+) Tính OA, OB, giải phương trình tìm x o →  Phương trình tiếp tuyến và kết luận.

16 tháng 5 2019

27 tháng 1 2017

Đáp án D

Ta có: y’ =   − 5 ( x − 3 ) 2

ð y’(4) = -5

Phương trình đường tiếp tuyến tại M là: y = -5x + 27

Vậy phương trình cắt Ox, Oy lần lượt tại 2 điểm: A( ; 0), B(0;27)

Ta có: SOAB =   1 2 .27. 27 5 = 729 10

18 tháng 7 2017

a) vẽ dễ lắm ; tự vẽ nha

b) xét phương trình hoành độ của 2 đồ thị đó

ta có : \(x^2=-2x+3\Leftrightarrow x^2+2x-3=0\)

ta có : \(a+b+c=1+2-3=0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=1\) \(\Rightarrow y=x^2=1^2=1\) vậy \(A\left(1;1\right)\)

\(x_2=\dfrac{c}{a}=-3\) \(\Rightarrow y=x^2=\left(-3\right)^2=9\) vậy \(B\left(-3;9\right)\)

vậy 2 đồ thị cắt nhau tại 2 điểm phân biệt là \(A\left(1;1\right)\)\(B\left(-3;9\right)\)

21 tháng 3 2018

Đáp án B

y ' = 3 x 2 + 6 x ;

Phương trình tiếp tuyến của (C) tại điểm x 0 = 0  là Δ  : y = − 1 .

Giao điểm của (C) và Δ là nghiệm của hệ phương trình

y = − 1 y = x 3 + 3 x 2 − 1 ⇔ x 3 + 3 x 2 − 1 = − 1 y = − 1 ⇔ x = 0 x = − 3 y = − 1

Do đó giao điểm B − 3 ; − 1 .

Tam giác OAB vuông tại A nên S O A B = 1 2 . O A . A B = 1 2 .1.3 = 3 2 .