Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9.
\(f\left(x\right)=F'\left(x\right)=3ax^2+2bx+c\)
\(\left\{{}\begin{matrix}f\left(1\right)=2\\f\left(2\right)=3\\f\left(3\right)=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a.1+2b.1+c=2\\3a.2^2+2b.2+c=3\\3a.3^2+2b.3+c=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a+2b+c=2\\12a+4b+c=3\\27a+6b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=\frac{1}{2}\\c=1\end{matrix}\right.\)
\(\Rightarrow F\left(x\right)=\frac{1}{2}x^2+x+1\)
10.
\(F\left(x\right)=\int\frac{x-2}{x^3}dx=\int\left(\frac{1}{x^2}-\frac{2}{x^3}\right)dx=\int\left(x^{-2}-2x^{-3}\right)dx\)
\(=-1.x^{-1}+x^{-2}+C=-\frac{1}{x}+\frac{1}{x^2}+C\)
\(F\left(-1\right)=3\Leftrightarrow1+1+C=3\Rightarrow C=1\)
\(\Rightarrow F\left(x\right)=-\frac{1}{x}+\frac{1}{x^2}+1\)
4.
\(\int\left(x^3-\frac{3}{x^2}+2^x\right)dx=\frac{1}{4}x^4-\frac{3}{x}+\frac{2^x}{ln2}+C\)
5.
\(\int e^{2019x}dx=\frac{1}{2019}\int e^{2019x}d\left(2019x\right)=\frac{1}{2019}e^{2019x}+C\)
6.
\(\int sin2018x.dx=\frac{1}{2018}\int sin2018x.d\left(2018x\right)=-\frac{1}{2018}cos2018x+C\)
7.
\(\int\frac{x^2-x+1}{x-1}dx=\int\left(\frac{x\left(x-1\right)}{x-1}+\frac{1}{x-1}\right)dx=\int\left(x+\frac{1}{x-1}\right)dx=\frac{1}{2}x^2+ln\left|x-1\right|+C\)
8.
\(F\left(x\right)=\int\left(2x+1\right)^3dx=\frac{1}{2}\int\left(2x+1\right)^3d\left(2x+1\right)=\frac{1}{8}\left(2x+1\right)^4+C\)
\(F\left(\frac{1}{2}\right)=4\Leftrightarrow\frac{1}{8}\left(2.\frac{1}{2}+1\right)^4+C=4\Rightarrow C=2\)
\(\Rightarrow F\left(x\right)=\frac{1}{8}\left(2x+1\right)^4+2\Rightarrow F\left(\frac{3}{2}\right)=\frac{1}{8}4^4+2=34\)
Câu 1: Xét trên miền [1;4]
Do \(f\left(x\right)\) đồng biến \(\Rightarrow f'\left(x\right)\ge0\)
\(x\left(1+2f\left(x\right)\right)=\left[f'\left(x\right)\right]^2\Leftrightarrow x=\frac{\left[f'\left(x\right)\right]^2}{1+2f\left(x\right)}\Leftrightarrow\frac{f'\left(x\right)}{\sqrt{1+2f\left(x\right)}}=\sqrt{x}\)
Lấy nguyên hàm 2 vế:
\(\int\frac{f'\left(x\right)dx}{\sqrt{1+2f\left(x\right)}}=\int\sqrt{x}dx\Leftrightarrow\int\left(1+2f\left(x\right)\right)^{-\frac{1}{2}}d\left(f\left(x\right)\right)=\int x^{\frac{1}{2}}dx\)
\(\Leftrightarrow\sqrt{1+2f\left(x\right)}=\frac{2}{3}x\sqrt{x}+C\)
Do \(f\left(1\right)=\frac{3}{2}\Rightarrow\sqrt{1+2.\frac{3}{2}}=\frac{2}{3}.1\sqrt{1}+C\Rightarrow C=\frac{4}{3}\)
\(\Rightarrow\sqrt{1+2f\left(x\right)}=\frac{2}{3}x\sqrt{x}+\frac{4}{3}\)
Đến đây có thể bình phương chuyển vế tìm hàm \(f\left(x\right)\) chính xác, nhưng dài, thay luôn \(x=4\) vào ta được:
\(\sqrt{1+2f\left(4\right)}=\frac{2}{3}4.\sqrt{4}+\frac{4}{3}=\frac{20}{3}\Rightarrow f\left(4\right)=\frac{\left(\frac{20}{3}\right)^2-1}{2}=\frac{391}{18}\)
Câu 2:
Diện tích hình phẳng cần tìm là hai miền đối xứng qua Oy nên ta chỉ cần tính trên miền \(x\ge0\)
Hoành độ giao điểm: \(sinx=x-\pi\Rightarrow x=\pi\)
\(S=2\int\limits^{\pi}_0\left(sinx-x+\pi\right)dx=4+\pi^2\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\)
\(\Rightarrow2a+b^3=9\)
a) f(x) = 2x3 – 3x2 – 12x + 1 ⇒ f’(x) = 6x2 – 6x – 12
f’(x) = 0 ⇔ x ∈ {-1, 2}
So sánh các giá trị:
f(x) = -3; f(-1) = 8;
f(2) = -19, f(52)=−332f(52)=−332
Suy ra:
maxx∈[−2,52]f(x)=f(−1)=8minx∈[−2,52]f(x)=f(2)=−19maxx∈[−2,52]f(x)=f(−1)=8minx∈[−2,52]f(x)=f(2)=−19
b) f(x) = x2 lnx ⇒ f’(x)= 2xlnx + x > 0, ∀ x ∈ [1, e] nên f(x) đồng biến.
Do đó:
maxx∈[1,e]f(x)=f(e)=e2minx∈[1,e]f(x)=f(1)=0maxx∈[1,e]f(x)=f(e)=e2minx∈[1,e]f(x)=f(1)=0
c) f(x) = f(x) = xe-x ⇒ f’(x)= e-x – xe-x = (1 – x)e-x nên:
f’(x) = 0 ⇔ x = 1, f’(x) > 0, ∀x ∈ (0, 1) và f’(x) < 0, ∀x ∈ (1, +∞)
nên:
maxx∈[0,+∞)f(x)=f(1)=1emaxx∈[0,+∞)f(x)=f(1)=1e
Ngoài ra f(x) = xe-x > 0, ∀ x ∈ (0, +∞) và f(0) = 0 suy ra
maxx∈[0,+∞)f(x)=f(0)=0maxx∈[0,+∞)f(x)=f(0)=0
d) f(x) = 2sinx + sin2x ⇒ f’(x)= 2cosx + 2cos2x
f’(x) = 0 ⇔ cos 2x = -cosx ⇔ 2x = ± (π – x) + k2π
⇔ x∈{−π+k2π;π3+k2π3}x∈{−π+k2π;π3+k2π3}
Trong khoảng [0,3π2][0,3π2] , phương trình f’(x) = 0 chỉ có hai nghiệm là x1=π3;x2=πx1=π3;x2=π
So sánh bốn giá trị : f(0) = 0; f(π3)=3√32;f(π)=0;f(3π2)=−2f(π3)=332;f(π)=0;f(3π2)=−2
Suy ra:
maxx∈[0,3π2]f(x)=f(π3)=3√32minx∈[0,3π2]f(x)=f(3π2)=−2
Chọn \(f\left(x\right)=x^3+ax^2+bx+c\)
\(2f\left(x^2\right)+f'\left(x\right)=2x^6+7x^2+2\)
\(\Leftrightarrow2x^6+2ax^4+2bx^2+c+3x^2+2ax+b=2x^6+7x^2+2\)
\(\Leftrightarrow2ax^4+\left(2b+3\right)x^2+2ax+b+c=7x^2+2\)
Đồng nhất 2 vế ta được: \(\left\{{}\begin{matrix}a=0\\2b+3=7\\b+c=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c=0\\b=2\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=x^3+2x\Rightarrow f\left(1\right)=3\)