Cho hàm số bậc nhất có đồ thị là đường thẳng d. Tìm hàm số đó biết d đi qua M( 1;2) và ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

Đáp án D

Gọi hàm số cần tìm là y= ax + b

Đường thẳng d cắt trục Ox tại  và cắt Oy tại Q( 0 ;b) với a< 0; b> 0

 

Ta có tam giác OPQ cân tại O nên  hay b( a+1) =0

 

Suy ra b=0 (loại) hoặc a= -1

Ta có d qua M nên 2=a+ b nên b= 3

Vậy hàm số cần tìm là y= -x+ 3. 

Chọn D.

10 tháng 4 2017

a)

y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2

y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3

Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\)  \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).

Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).

b)

I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).

y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)

Vậy: \(y=-x^2-4x-3\).

c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).

7 tháng 12 2016

Toán lớp 9.

17 tháng 5 2017

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

20 tháng 6 2020

\(B\in d\)=> B ( 7-2m; -3 +m) 

\(B'\in d'\)=> B' ( -5 + 4t ; -7 + 3t ) 

Mà A; B;B' \(\in\)\(\Delta\) và AB = AB' 

=> \(\overrightarrow{AB}=\overrightarrow{B'A}\)

=> \(\hept{\begin{cases}7-2m-2=2+5-4t\\-3+m+3=-3+7-3t\end{cases}}\)<=>  m = 1; t = 1 

=> B(5 ; -2); C( -1; - 4) 

=> Viết phương trình d :....

2 tháng 4 2016

Xét điểm \(B\left(3+t;-2t\right)\in d_2\). Lấy điểm A sao cho M(1;2) là trung điểm của AB. Khi đó \(A\left(1-t;4+2t\right)\) và 

\(A\in d_1\Leftrightarrow\frac{1-t-3}{3}=\frac{4+2t}{-1}\Leftrightarrow t=-2\)

Do đó B(1;4) và đường thẳng \(\Delta\) cần tìm có phương trình x=1

NV
3 tháng 11 2019

Phương trình hoành độ giao điểm:

\(x^2+6x=2x-m+2\Leftrightarrow x^2+4x+m-2=0\) (1)

\(\Delta'=4-\left(m-2\right)=6-m>0\Rightarrow m< 6\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m-2\end{matrix}\right.\)

\(x_1^3+x_2^3\ge4\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\ge4\)

\(\Leftrightarrow\left(-4\right)^3+12\left(m-2\right)\ge4\)

\(\Leftrightarrow12m\ge92\Rightarrow m\ge\frac{23}{3}\)

Vậy ko tồn tại m thỏa mãn?

a: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=-20\\3a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4a=-28\\3a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=-13\end{matrix}\right.\)

b: Vì (d)//y=-2/3x+1 nên a=-2/3

Vậy: (d): y=-2/3x+b

Thay x=4 và y=-3 vào (d), ta được:

b-8/3=-3

hay b=-1/3