K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 6 2020

\(P=\frac{1}{2}log_{\frac{a}{b}}a-4log_a\left(a+\frac{b}{4}\right)=\frac{1}{2log_a\frac{a}{b}}-4log_a\left(a+\frac{b}{4}\right)=\frac{1}{2\left(1-log_ab\right)}-4log_a\left(a+\frac{b}{4}\right)\)

Ta có: \(a+\frac{b}{4}\ge2\sqrt{\frac{ab}{4}}=\sqrt{ab}\)

\(\Rightarrow log_a\left(a+\frac{b}{4}\right)\le log_a\sqrt{ab}\) (do \(0< a< 1\))

\(\Rightarrow P\ge\frac{1}{2\left(1-log_ab\right)}-4log_a\sqrt{ab}=\frac{1}{2\left(1-log_ab\right)}-2\left(1+log_ab\right)\)

Đặt \(log_ab=x\Rightarrow0< x< 1\) \(\Rightarrow P\ge\frac{1}{2\left(1-x\right)}-2\left(1+x\right)\)

Xét hàm \(f\left(x\right)=\frac{1}{2\left(1-x\right)}-2\left(1+x\right)\) với \(0< x< 1\)

\(f'\left(x\right)=\frac{1}{2\left(1-x\right)^2}-2=0\Leftrightarrow\frac{1-4\left(1-x\right)^2}{2\left(1-x\right)^2}=0\Rightarrow x=\frac{1}{2}\)

Từ BBT ta thấy \(f\left(x\right)_{min}=f\left(\frac{1}{2}\right)=-2\)

\(\Rightarrow P\ge-2\Rightarrow P_{min}=-2\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\a=\frac{b}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}log_ab=\frac{1}{2}\\a=\frac{b}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\a=\frac{b}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{16}\\b=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow S=\frac{5}{16}\)

NV
7 tháng 8 2020

Xét \(y=8x^4+ax^2+b\Rightarrow y'=32x^3+2ax\)

\(y'=0\Rightarrow2x\left(16x^2+a\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=-\frac{a}{16}\end{matrix}\right.\)

- Nếu \(a>0\Rightarrow y'=0\) có đúng 1 nghiệm \(x=0\)

\(\Rightarrow f\left(x\right)_{max}=f\left(-1\right)=f\left(1\right)=\left|a+b+8\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=-7\\a+b=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=-7-a< 0\\b=-9-a< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a>0\\b< 0\end{matrix}\right.\)

Đáp án A đúng luôn, ko cần xét \(a< 0\) nữa

Chọn A

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\) là A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\) Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị...
Đọc tiếp

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\)

A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\)

Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị của biểu thức ( M + 2N ) là

A. \(2\sqrt{2}+2\) B. \(4-2\sqrt{2}\) C. \(2\sqrt{2}-4\) D. \(2\sqrt{2}-2\)

Câu 3 : Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \(-x^3-3x^2+m\) trên đoạn \(\left[-1;1\right]\) bằng 0

A. m = 0 B. m = 6 C. m = 2 D. m = 4

Câu 4 : Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{x+m}{x+1}\) trên \(\left[1;2\right]\) bằng 8 ( m là tham số thực ) . Khẳng định nào sau đây đúng ?

A. m > 10 B. 8 < m < 10 C. 0 < m < 4 D. 4 < m < 8

2
NV
16 tháng 10 2020

3.

\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)

\(\Rightarrow y_{min}=y\left(1\right)=m-4\)

\(\Rightarrow m-4=0\Rightarrow m=4\)

4.

Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định

\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)

\(\Rightarrow m=\frac{41}{5}\)

Đáp án B

NV
16 tháng 10 2020

1.

\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến

\(m=y_{min}=y\left(0\right)=2\)

\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)

\(\Rightarrow M^2+m^2=\frac{41}{4}\)

2.

Hàm xác định trên \(\left[-2;2\right]\)

\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)

\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)

\(\Rightarrow N=-2;M=2\sqrt{2}\)

\(\Rightarrow M+2N=2\sqrt{2}-4\)

4 tháng 4 2018

óc chó tự nghĩ đi nhá ahihihi

DD
5 tháng 12 2020

\(4^{a+b-1}-\left(\frac{1}{2}\right)^{3a+b-2}+5a+3b-4=0\)

\(\Leftrightarrow2^{2a+2b-2}-2^{-3a-b+2}+5a+3b-4=0\)

\(\Leftrightarrow2^{2a+2b-2}+2b+2b-2=2^{-3a-b+2}-3a-b+2\)(1)

Xét hàm \(f\left(t\right)=2^t+t\)

\(f'\left(t\right)=2^t.ln\left(2\right)+1>0,\forall t\inℝ\)

suy ra \(f\left(t\right)\)đồng biến trên \(ℝ\).

(1) suy ra \(2a+2b-2=-3a-b+2\Leftrightarrow b=\frac{4-5a}{3}\)

\(P=a^2+2ab+b^2=\left(a+b\right)^2=\left(a+\frac{4-5a}{3}\right)^2\ge0\)

Dấu \(=\)khi \(a=2\).

Vậy \(minP=0\)khi \(a=2,b=-2\) 

NV
8 tháng 8 2020

\(\left\{{}\begin{matrix}x^2=2log_a\left(ab\right)=2\left(1+log_ab\right)\\y^2=2log_b\left(ab\right)=2\left(1+log_ba\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2log_ab=x^2-2\\2log_ba=y^2-2\end{matrix}\right.\) \(\Rightarrow\left(x^2-2\right)\left(y^2-2\right)=4\)

\(\Leftrightarrow y^2-2=\frac{4}{x^2-2}\Rightarrow y^2=\frac{2x^2}{x^2-2}\) (\(x\ge\sqrt{2}\))

\(\Rightarrow P=f\left(x\right)=8x+\frac{x\sqrt{2}}{\sqrt{x^2-2}}=0\)

\(\Rightarrow f'\left(x\right)=8-\frac{2\sqrt{2}x}{\left(x^2-2\right)^2\sqrt{\frac{x^2}{x^2-2}}}=0\)

\(\Leftrightarrow\left(x^2-2\right)^3=\frac{1}{8}\Leftrightarrow x^2-2=\frac{1}{2}\Rightarrow x=\frac{\sqrt{10}}{2}\)

\(\Rightarrow P_{min}=P\left(\frac{\sqrt{10}}{2}\right)=5\sqrt{10}\Rightarrow\left\{{}\begin{matrix}m=0\\n=5\\m=10\end{matrix}\right.\) \(\Rightarrow m+n+p=15\)