Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
32+1123+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}gfdrrffhjxxojmu09\)
a) Khi \(m=-4\) phương trình trở thành:
\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)
\(\Leftrightarrow0.x^2=0\)
Đúng với mọi x.
b) Khi \(m=-1\) phương trình trở thành:
\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)
\(\Leftrightarrow0.x^2=3\)
Phương trình vô nghiệm.
c) Khi \(m=-2\) phương trình trở thành:
\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)
\(\Leftrightarrow-2.x^2=2\)
\(\Leftrightarrow x^2=-1\)
Phương trình này cũng vô nghiệm.
Khi \(m=-3\) phương trình trở thành:
\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)
\(\Leftrightarrow-2x^2=1\)
\(\Leftrightarrow x^2=-\dfrac{1}{2}\)
Phương trình cũng vô nghiệm.
d) Khi \(m=0\) phương trình trở thành:
\(\left[0^2+5.0+4\right]x^2=0+4\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
Phương trình có hai nghiệm là \(x=1,x=-1\).
a. Nhân hai vế của phương trình (1) với 24, ta được:\(\frac{7x}{8}\)−5(x−9)⇔\(\frac{1}{6}\)(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=67x8−5(x−9)⇔16(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=6
Vậy phương trình (1) có một nghiệm duy nhất x = 6.
b. Ta có:
2(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+32(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+3 (3)
Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.
Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.
c. Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2. Do (3) nên phương trình (2) có nghiệm x = 2 cũng có nghĩa là phương trình (a−2)2=a+3(a−2)2=a+3 có nghiệm x = 2. Thay giá trị x = 2 vào phương trình này, ta được(a−2)2=a+3(a−2)2=a+3. Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này:
(a−2)2=a+3⇔a=7(a−2)2=a+3⇔a=7
Khi a = 7, dễ thử thấy rằng phương trình (a−2)x=a+3(a−2)x=a+3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.
a. để phương trình nhận x=3 là nghiệm ta có
\(a\left(3+2\right)-a^2-2=0\Leftrightarrow a^2-5a+2=0\Leftrightarrow a=\frac{5\pm\sqrt{17}}{2}\)
b. Để phương trình có duy nhất 1 nghiệm âm ta có :
\(\hept{\begin{cases}a\ne0\\x=\frac{a^2-2a+2}{a}< 0\end{cases}\Leftrightarrow a< 0}\) do \(a^2-2a+2>0\forall a\)
c. Để phương trình đã cho vô nghiệm thì a=0
d. Phương trình đã cho không thể có vô số nghiệm thực.
Đáp án cần chọn là: C